CORRIGENDUM TO: THE LEVEL FOUR BRAID GROUP
(J. REINE ANGEW. MATH. 735 (2018), 249–264)

TARA E. BRENDLE AND DAN MARGALIT

Abstract. The proof of the first statement of Theorem 5.1 of the paper referenced in the title is correct for \(k = 1 \) and incorrect for \(k \geq 2 \) and should be considered an open problem. As such, the proof of the second statement is not correct for \(k \geq 2 \).

This note is an erratum for the published version of our paper [2]. The arXiv has been updated with the corrections described here. As in our paper, let \(\rho \) be the symplectic representation of \(B_n \), let \(\pi_1(D'_n, p_1), \ldots, \pi_1(D'_n, p_n) \) denote the point pushing subgroups of \(B_n \), and for \(1 \leq k \leq n \) set

\[
K_{n,k} = \pi_1(D'_n, p_1) \cap \cdots \cap \pi_1(D'_n, p_k)
\]

Also, let \(\Gamma_n[m] \) denote \(\text{Sp}_{2g} (\mathbb{Z})[m] \) when \(n = 2g + 1 \) and \((\text{Sp}_{2g+2} (\mathbb{Z})[m] \mid y_{g+1} \) when \(n = 2g + 2 \).

Theorem 5.1 describes \(\rho(K_{n,k}) \) for \(n \geq 5 \). The theorem separately addresses the cases where \(n = 2g + 1 \) and \(n = 2g + 2 \). In each case, there are two statements. The first statement is that \(\rho(K_{n,k}) \) contains \(\Gamma_n[4] \) and the second statement describes the quotient of \(\rho(K_{n,k}) \) by \(\Gamma_n[4] \). We refer to these two statements as the containment statement and the quotient statement, respectively.

The proof of the containment statement of Theorem 5.1 is correct for \(k = 1 \) and incorrect for \(k \geq 2 \). What our argument for the containment statement actually shows is that each \(\rho(\pi_1(D'_n, p_i)) \) contains \(\Gamma_n[4] \) and hence the argument only proves the weaker statement that

\[
L_{n,k} = \rho(\pi_1(D'_n, p_1)) \cap \cdots \cap \rho(\pi_1(D'_n, p_k))
\]

contains \(\Gamma_n[4] \). Since \(L_{n,1} = \rho(K_{n,1}) \), the argument for the containment statement is correct for \(k = 1 \) and \(n \geq 5 \). For \(k \geq 2 \) we have \(L_{n,k} \supseteq \rho(K_{n,k}) \), but this is not an equality in general.

It should be considered an open question as to whether the containment statement of Theorem 5.1 is correct for \(k \geq 2 \). At the end of the paper, we explain how our proof of Theorem 5.1 can be extended to the case \(n = 3 \), in particular that \(\rho(K_{3,k}) \) contains \(\Gamma_3[4] = \text{SL}_2(\mathbb{Z})[4] \). This statement, the \(n = 3 \) version of the containment statement, is not correct. In particular, the last statement in the paper, that \(\rho(K_{3,3}) = \Gamma_3[4] \), is not correct. In fact, \(\rho(K_{3,3}) \) has infinite index in \(\text{SL}_2(\mathbb{Z}) \). To see this, we first note that \(K_{3,3} \) is the Brunnian subgroup of \(B_3 \). Let \(Z \) denote the kernel of \(\rho : B_3 \to \text{SL}_2(\mathbb{Z}) \).
The group Z is an infinite cyclic group generated by the square of the Dehn twist about the boundary of D'_3. For $m \neq 0$, no element of the coset $\sigma^m Z$ is Brunnian, hence no power of the matrix $\rho(\sigma_1)$ lies in $\rho(K_{3,3})$.

The statement and proof of the quotient statement of Theorem 5.1 are correct for $k = 1$. Because of the $n = 3$ case, we expect that the containment statement of Theorem 5.1 is not correct for any $k \geq 2$ and $n \geq 5$. If this is the case, the quotient statement does not make sense for $k \geq 2$.

As in the $n = 3$ case, we expect that $\rho(K_{n,k})$ in fact has infinite index in $\Gamma_n[4]$ for $n \geq 4$ and $k \geq 2$. As in the $n = 3$ case, the $k = n$ version of this statement can be proven by showing that if $h \in \ker(\rho)$ then $\sigma^m h$ is not Brunnian. Since $\ker(\rho)$ is generated by squares of Dehn twists about curves surrounding an odd number of punctures [1], we may assume that h is such a product.

What our argument for the quotient statement of Theorem 5.1 actually shows is that the image of $\rho(K_{n,k})$ in $\Gamma_n[2]/\Gamma_n[4]$ is $(\mathbb{Z}/2)^2$, $\mathbb{Z}/2$, or 1, according to whether k is 1, 2, or greater. In other words, $\rho(K_{n,k})$ modulo $\rho(K_{n,k}) \cap \Gamma_n[4]$ is the abelian group given in the previous sentence. It is also true that $L_{n,k}/\Gamma_n[4]$ is the same abelian group. The given indices of $\rho(K_{n,k})$ in $\Gamma_n[2]$ for $k \geq 2$ are the correct indices for $L_{n,k}$ in $\Gamma_n[2]$.

There are two other incorrect statements in Section 3 of the published paper that we would like to point out. First, we incorrectly state that $\rho(B_n)$ is the semi-direct product of a symmetric group with $\Gamma_n[2]$. In fact $\rho(B_n)$ is a non-split extension of these groups. Also, we incorrectly state that $\psi : \text{Sp}_{2g}(\mathbb{Z}/2) \to \text{sp}_{2g}(\mathbb{Z}/2)$ is the abelianization map for $\text{Sp}_{2g}(\mathbb{Z}/2)$ (Sato proved that the abelianization is larger [3, Corollary 10.2]). We are grateful to David Benson and Nick Salter for these corrections.

References

