Math 6421

Online or in person fine.
Some HW per week (drop 3) Gradescope.
Online office hours Fri 1:30-2:30 Teams
& by appt.
Overview of Course

What is alg. geom?
study of solns of polynomials
(using ring theory, etc.)
“linear alg, without the linear”
much harder.
Setup

$k = \text{field}$ (usually can think $k = \mathbb{C}$)

$k[x_1, ..., x_n] = \text{ring of polynomials in } x_1, ..., x_n$ with coeffs in k.

$\mathbb{A}^n = \mathbb{A}^n_k = \text{affine n-space over } k$

$= \{(a_1, ..., a_n) \in \mathbb{A} \mid a_i \in k\}$

In bijection with k^n. In \mathbb{A}^n no vect. sp. structure, so O not special etc.
For \(f_1, \ldots, f_r \in k[x_1, \ldots, x_n] \):

\[
Z(f_1, \ldots, f_r) = \{(a_1, \ldots, a_n) \in \mathbb{A}^n : f_i(a_1, \ldots, a_n) = 0 \ \forall \ i\}
\]

\(Z \) \quad \text{zero set or vanishing set}

Some texts use \(V \) instead of \(Z \)

These are \underline{affine algebraic varieties}.

\underline{Special cases}

1. \(n = r = 1 \)
 - \(k \) alg closed: exactly \(d \) solns (with mult)

2. Linear Algebra
 - Solving polynomials in 1 var.
Again, much harder when \(\text{deg} > 1 \) or \(\# \text{eqns} > 1 \).

Example

\[
g_1(x, y) = 3x^3 - 17xy^2 + 2xy + 4y^2 - 6
\]

\[
g_2(x, y) = x^5 - x^3y^2 + 3xy^2
\]

We'll learn: \(\mathbb{Z}(g_i) \) is a "curve" in \(\mathbb{C}^2 \)

Generically: 0-dim soln set (points) \(\mathbb{Z}(g_2) \)
Weak Bezout's Thm

If $f_1, f_2 \in \mathbb{C}[x,y]$, no common factors
\[\deg f_i = d_i \]

Then $|\mathbb{Z}(f_1, f_2)| \leq d_1 d_2$.
Chapter 1 The geometry/algebra dictionary

\[\text{Alg} \rightarrow \text{Geom} \]

Given \(J \subseteq k[x_1, \ldots, x_n] \) ideal

\[\sim Z(J) = \{ a \in \mathbb{A}^n : f(a) = 0 \ \forall f \in J \} \]

example \(J = \langle f_1, \ldots, f_r \rangle \) ideal generated by \(f_1, \ldots, f_r \)

\[= \{ g_1 f_1 + \cdots + g_r f_r : g_i \in k[x_1, \ldots, x_n] \} \]

Then \(Z(J) = Z(f_1, \ldots, f_r) \) as above.

\[\text{Geom} \rightarrow \text{Alg} \]

Given \(V \subseteq \mathbb{A}^n \)

\[\sim I(V) = \{ f \in k[x_1, \ldots, x_n] : f(a) = 0 \ \forall a \in V \} \]

this is an ideal.
We have:
\[
\{ \text{subsets of } \mathbb{A}^n \} \leftrightarrow \{ \text{ideals in } k[x_1, \ldots, x_n] \}
\]

Neither is injective. Why?

\[\iff \mathbb{Z}(x) = \mathbb{Z}(x^2) \]
more interesting direction

\[\implies \text{all open sets } \rightarrow \text{ O ideal in } \mathbb{C}.
\]

To fix latter, replace LHS with affine alg vars

For former, the example is the only issue. (taking powers).
The fix: For an ideal \(J \subseteq R \), have

\[
\text{rad}(J) = \{ r \in R : r^i \in J \text{ some } i \geq 1 \}
\]

"radical"

Will use Hilbert's Nullstellsatz to show

\[
\{ \text{affine alg vars in } \mathbb{A}^n \} \leftrightarrow \{ \text{radical ideals in } k[x_1, \ldots, x_n] \}
\]

Also:

\[
\{ \text{irreducible alg vars in } \mathbb{A}^n \} \leftrightarrow \{ \text{prime ideals ...} \}
\]

\[
\mathbb{A}^n = \{ \text{pts in } \mathbb{A}^n \} \leftrightarrow \{ \text{maximal ideals} \}
\]
Chapter 2 Projective Varieties.

\[\mathbb{P}^n = \mathbb{P}_k^n = (k^{n+1} - 0) / k^* \]

where \(v \sim w \) if \(v = cw \) \(c \in k^* \).

= set of lines in \(k^{n+1} \)

Write equiv class of \((a_0, \ldots, a_n)\)

as \([a_0: a_1: \ldots: a_n]\)

In \(\mathbb{P}^2 \) these are all same!

In \(\mathbb{A}^2 \) have different conics

\(\bigcirc \bigcirc \bigcirc \bigcirc \)

We will study zero sets in \(\mathbb{P}^n \)....

because: more symmetry.
Can regard \mathbb{P}^n as $\mathbb{A}^n \cup \mathbb{P}^{n-1}$.

$k^{n+1}.$

$a_n = 1 \approx \mathbb{A}^n$

a_0, \ldots, a_n

\[\mathbb{A}^n = \{ [a_0 : \ldots : a_n] : a_n \neq 0 \} \]

\[\mathbb{P}^{n-1} = \{ [a_0 : \ldots : a_{n-1} : a_n] : a_n = 0 \} \]
Projective varieties

$f(a_0, \ldots, a_n)$ is not well-defined on \mathbb{P}^n

e.g. $f(x, y) = x + y^2$

$f(-1, 1) = 0$
$f(-2, 2) = 2$

So can't say $f([-1:1]) = 0$.

But, if f is homogeneous (all terms have same degree d)

then $f(cv) = c^d f(v)$.

So $f(v) = 0 \iff f(cv) = 0$

So: get zero sets in \mathbb{P}^n for homog. poly's.
So for f_1, \ldots, f_r homogeneous,

$$\mathbb{Z}(f_1, \ldots, f_r) = \{ a \in \mathbb{P}^n : f_i(a) = 0 \ \forall \ i \}$$

We'll see:

1. Affine varieties have projective closures

 $$V \rightarrow \mathcal{O}$$

2. Cone on a proj. var. is an aff. variety.

So, the theories are closely related.
Next time: Better Bezout

\[Z(f_1) \] curves in \(\mathbb{P}^2 \) of deg \(d_1 \)

\[Z(f_2) \quad & \quad f_1, f_2 \text{ no common factors.} \]

Then \[|Z(f_1) \cap Z(f_2)| = d_1 d_2 \] (count with multiplicity).
Overview. From last time:

Chapter 1. The geometry/algebra dictionary

\(f_1, \ldots, f_r \in k[x_1, \ldots, x_n] \)

\(Z(f_1, \ldots, f_r) = \{ a \in A^n : f_i(a) = 0 \ \forall \ i \} \)

“affine algebraic variety”

There is a bijection

\(\{ aav's \ \text{in} \ A^n \} \leftrightarrow \{ \frac{\text{rad ideals in}}{k[x_1, \ldots, x_n]} \} \)

\(V \mapsto I(V) \)

\(Z(J) \leftrightarrow J \)

Chapter 2. Projective varieties

\(\mathbb{P}^n : (k^{n+1} - 0)/k^* \)

\([a_0, \ldots, a_n]\) written \([a_0 : \ldots : a_n]\)

\(\mathbb{P}^n = A^n \cup \mathbb{P}^{n-1} \)

homogeneous poly's in \(k[x_0, \ldots, x_n] \)

\(\mapsto \) projective alg. var's

These are always compact and tend to have more symmetry/
info (e.g. intersections at \(\infty \)).
Chapter 3 Classical constructions

1. Segre embedding

\[\varphi_{m,n} : \mathbb{P}^m \times \mathbb{P}^n \to \mathbb{P}^{(m+1)(n+1)-1} \]

consequence: product of varieties is a variety

example: \(g_1(x,y) = 3x^3 - 17xy^2 \)
\(g_2(z,w) = z^5 - w^2z^3 \)

Does \(\mathbb{Z}(g_1,g_2) \) work?
No, get \(\mathbb{Z}(g_1) \times \mathbb{P}^1 \)

\(\mathbb{P}^1 \times \mathbb{Z}(g_2) \)
and more...

2. Veronese embedding

\[\nu_d : \mathbb{P}^n \to \mathbb{P}^{(d+n)-1} \]

reduces the degree

For example: "Fermat curve"
\[Z(x_0^3 + x_1^3 + x_2^3) \subseteq \mathbb{P}^2 \]
maps intersection of 9 quadrics in \(\mathbb{P}^9 \)

Application: Complements of varieties are varieties

e.g. \(\text{Poly}_2(\mathbb{C}) = \{ ax^2 + bx + c : b^2 - 4ac \neq 0 \} \)
\(\text{GL}_2(\mathbb{C}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : ad - bc \neq 0 \} \)
Grassmannian

Gr, n = \{ r - \text{dim planes thru 0 in } k^n \}

Note: \(\text{P}^n = \text{Gr}, n+1 \)

Gr, n important in topology:

"classifying space for n-dim vector bundles"

We'll show this a proj. var

Plücker embedding:

\[\text{Gr}, n \to \text{P}(\Lambda^n k^n) \]

"parameter space of widgets is a widget"

Blow up

(Fixing, not destroying)

The map \(\mathbb{A}^2 \setminus 0 \to \text{P}^1 \)

does not extend to 0.

The blowup of \(\mathbb{A}^2 \) at 0:

\[\{ (\mathbf{Q}, l) \in \mathbb{A}^2 \times \text{P}^1 : \mathbf{Q} \in l \} \]

Application: resolving singularities.

\[x^3 = y^2 \]
Chapter 4. Dimension, degree, smoothness

“expected properties”

\[\dim V = \text{(size of max chain of varieties at } p\text{)} - 1 \]

We'll show: behaves like \(\dim \) in lin alg.

\[\text{codim } V_i = c_i \quad (V_i \text{ irreducible}) \]

\[\text{codim } V_1 \cap V_2 = c_1 + c_2 \]

generically.

Degree \(V \subseteq \mathbb{A}^n \) or \(\mathbb{P}^n \) \(k \) alg. closed

\[\dim V = k. \]

\[\text{deg } V = \text{generic/expected } \# \text{ intersections} \]

with \(n-k \) plane

For \(V = Z(f) \) “hypersurface”

\[\text{deg } V = \text{deg } f \]

Helps understand number of solns when \(\dim = 0 \).
Smoothness A Variety is smooth exactly when it is a manifold... can use manifold theory.

Chapter 5. Curves in the plane.

Setup $f \in \mathbb{C}[x_0, x_1, x_2]$ homog.

$C = \mathbb{Z}(f) \subseteq \mathbb{P}^2$

Picture:

When $\deg f = 2$

C is a "conic"

Thm. (Five pts determine a conic)

Given $p_1, \ldots, p_5 \in \mathbb{P}^2$ \exists conic passing thru all p_i (generically unique)

Bézout's thm. $C_1 = \mathbb{Z}(f_1)$ \hspace{1cm} $\deg f_1 = d_1$

$C_2 = \mathbb{Z}(f_2)$

& f_1, f_2 no common factor

Then $|\mathbb{Z}(f_1) \cap \mathbb{Z}(f_2)| = d_1d_2$

(count with mult.)

Thm. Given $(d+1)$ distinct pts in \mathbb{P}^2

\exists $\deg d$ curve passing thru.
Cayley-Bacharach Thm
$C_1, C_2 \subseteq \mathbb{P}^2$ cubic curves
with $|C_1 \cap C_2| = 9$
If C_3 passes thru 8 of the pts,
it passes thru the 9th.

Thm. \(f \in \mathbb{C}[x_0, x_1, x_2] \)
irred, homog, deg d
\(\sim \mathbb{Z}(f) \)
Then # sing pts \(\leq \binom{d-1}{2} \)

Classification of cubic curves in \mathbb{P}^2

Smoothness for curves:
\[C = \mathbb{Z}(f) \]
smooth a p if some
\[\frac{df}{dx_i}(p) \] nonzero.

Actual pic

\[Z(x^2+y^3) \subseteq \mathbb{A}^2 \]
\[Z(y^2 = x^2 + x^3) \subseteq \mathbb{A}^2 \]
"Weierstrass curves"
Chapter 6. Special topics

Cayley-Salmon thm

Every smooth cubic surface in \mathbb{P}^3 contains 27 lines.

e.g. $x^3 + y^3 + z^3 + w^3$

find the lines!
Chapter 1. Affine alg. vars

& the geometry/alg dictionary

Setup: \(S \subseteq k[x_1, \ldots, x_n] \)

\[\mathcal{Z}(S) = \{ a \in \mathbb{A}^n : f(a) = 0 \text{ } \forall f \in S \} \]

“affine alg var”

Examples

\(\phi = \mathcal{Z}(k[x_1, \ldots, x_n]) = \mathcal{Z}(1) \)

Second = makes sense since \((1) = k[x_1, \ldots, x_n] \)

\(\mathbb{A}^n = \mathbb{Z}(0) \)

\((a_1, \ldots, a_n) = \mathbb{Z}(x_1-a_1, \ldots, x_n-a_n) \)

compare: lin alg.

\(\text{(Hyper)planes} \)

\(\text{Conics} \quad \mathbb{Z}(f) \subseteq \mathbb{A}^2 \quad \deg f = 2. \)

e.g. \(x^2-y^2-1 \quad xy-1 \quad y-x^2 \)

\[(x-y)(x+y) \quad x^2-1 \quad x^2 \]

“double line”
Aside: Conics over \(\mathbb{C} \) from a topological pt of view.

1. \(\mathbb{Z}(xy-1) \) is connected over \(\mathbb{C} \), every pt connected to \((1,1)\).

2. \(\mathbb{Z}(x^2-y) \) over \(\mathbb{C} \).

Have a map

\[
\mathbb{Z}(x^2-y) \rightarrow \mathbb{C} \quad (x,y) \mapsto y
\]
Algebraic groups

\[\text{SL}_{n,k} = \mathbb{Z} (\det -1) \leq \mathbb{A}^{n^2} \]

\[\text{GL}_{n,k} \text{ complement of } \mathbb{Z} (\det) \]

by defn.

In general, complements of aav’s are aav’s (later)

To see \(\text{GL}_{n,k} \) as a variety:

\[V = \left\{ (x_{ij}, t) \in \mathbb{A}^{n^2+1} : \det(x_{ij}) t - 1 = 0 \right\} \]

\[\varphi: \text{GL}_{n,k} \to V \]

\[A = (a_{ij}) \mapsto (a_{ij}, \frac{1}{\det A}) \]

is a bijection.

Twisted cubic

\[C = \text{Im } \varphi \text{ where } \]

\[\varphi: \mathbb{A}^1 \to \mathbb{A}^3 \]

\[t \mapsto (t, t^2, t^3) \]

As a variety

\[C = \mathbb{Z} (x^2 - y, x^3 - z) \]

\[= \mathbb{Z} (x^2 - y, z - x y) \]

intersection of two “quadrics”

\[C \text{ is also a determinantal var } \]

\[C = \{ (x, y, z) \in \mathbb{A}^3 : \text{rank} \left(\begin{array}{ccc} x & y & z \\ x & y & z \\ x & y & z \end{array} \right) < 2 \} \]

(Chris)

Q. Is any int. of quadrics a det. var?
8. A family of (smooth) cubics

\[C_{\lambda} = \mathbb{Z}(x(x-1)(x-\lambda) - y^2) \subseteq \mathbb{A}^2 \]
\[\lambda \neq 0, 1 \quad k = \mathbb{C} \]

Claim: \(C_{\lambda} \cong \mathbb{C} \)

Like the \(x-y^2 \) example:

\[C_{\lambda} \to \mathbb{A}^1 \]
\[(x, y) \to x \]

Other than \(x = 0, 1, \lambda \)

pts in \(\mathbb{A}^1 \) have two preims.

9. Trefoil

\[\mathbb{Z}(x^2 + y^2)^2 + 3x^2y - y^3) \]

intersect with \(S^3 = \{(x, y) : |x|^2 + |y|^2 = 1\} \)

"singularity theory"

exercise: Take complement of axes in \(\mathbb{C}^2 \)

& intersect with \(S^3 \).
Nonexamples \(k = \mathbb{C} \) in \(\mathbb{A}^n \)

1. **Fact.** Every affine algebraic variety is closed in Euclidean topology.
 \[\mathbb{Z}(S) \text{ is not an a.a.v. in } \mathbb{A}^n \]

2. **Fact.** The interior of any algebraic variety is \(\emptyset \).
 \[\mathbb{Z}(\{ z : |z| \leq 1 \}) \text{ is not an a.a.v.} \]

3. **Fact.** Any proper algebraic variety in \(\mathbb{A}^1 \) is finite (by FTAAlg).
 \[\mathbb{Z}(z) \subset \mathbb{C} \text{ is not a.a.v.} \]

Basic Properties of a.a.v's

1. \(\forall S \subseteq k[x_1, \ldots, x_n] \) have
 \[\mathbb{Z}(S) \cap \mathbb{Z}(S') = \mathbb{Z}(S \cup S') \]
 (exercise)

2. **Intersections of a.a.v's are a.a.v**
 \[\bigcap_{\alpha} \mathbb{Z}(I_\alpha) = \mathbb{Z}(\bigcup_{\alpha} I_\alpha) \]

3. **Finite unions of a.a.v's are a.a.v**
 \[V(I) \cup V(J) = V(IJ) \]
 (exercise)
 \[\bigcup_{k,j} \mathbb{Z}(x_k x_j) \]
 \[\bigcup_{k,j} \mathbb{Z}(x_k x_j) \]
 example \(V(x) \cup V(y) = V(xy) \)
Zariski Topology

A topology on a space X is a collection of sets, called closed sets such that:

1. \emptyset, X closed
2. Finite unions of closed sets are closed
3. Arbitrary intersections of closed sets are closed.

Complements of closed sets called "open".

Def. Zariski topology on \mathbb{A}^n has aar's as the closed sets.

Basic properties \Rightarrow this indeed is a topology.

The Zariski top. is strange:

1. All proper closed sets have \emptyset interior.
2. Proper closed subsets of \mathbb{A}^1 are finite.
3. No two open sets are disjoint.
 \Rightarrow not Hausdorff.
4. Compact \Rightarrow closed
 closed \Rightarrow compact

A concept: A set is Zariski dense iff every polynomial is det. by its values on that set.

E.g. $\mathbb{Z} \subseteq \mathbb{A}_R^1$
HW due Mon
Hilbert Basis Thm

Thm. Every \(\mathbb{Z}(I) \) equals some \(\mathbb{Z}(f_1, \ldots, f_r) \)
i.e. every \(a \) is the intersection of finitely many hypersurfaces

Lemma/Defn. \(R \) ring TFAE

1. Every ideal in \(R \) is fin gen.
2. \(R \) satisfies asc. chain cond:
 any \(I_1 \subseteq I_2 \subseteq \cdots \) eventually stationary.

Say \(R \) is Noetherian.

Fact. Fields are Noetherian.

PF of Lemma.

1 \(\implies \) 2. Let \(I_1 \subseteq I_2 \subseteq \cdots \)
 \(\implies I = U I_i \) is an ideal.

\(I \) is f.g. by 1.

Some \(I_j \) contains all gens

so \(I_k = I_j \) \(k \geq j \).

2 \(\implies \) 1. If \(I \) not f.g.

make \(I_1 \neq I_2 \neq I_3 \neq \cdots \)

by adding on gen. at a time.
Prop. R Noetherian \Rightarrow
$R[x_1,\ldots,x_n]$ Noeth.

In our case $R = K$, so HBT follows.

If. We'll do $R[x]$, rest is induction.

Say $I \subseteq R[x]$ not f.g.
Let $f_0 = \text{non-zero elt of } I$ of min deg.

Given f_i: $f_{i+1} = \text{nonzero elt of } I \setminus \langle f_0,\ldots,f_i \rangle$ of min deg.

Note $\deg f_i \leq \deg f_{i+1}$

Let $a_i = \text{lead coeff of } f_i$.

$I_i = (a_0,\ldots,a_i) \subseteq R$.

R Noeth $\Rightarrow I_0 \subseteq I_1 \subseteq \ldots$ eventually stat.

So if m st $a_{m+1} \in (a_0,\ldots,a_m)$

$\Rightarrow a_{m+1} = \sum r_i a_i \quad r_i \in R$

Let $f = f_{m+1} - \sum_{i=0}^{m} x^{\deg f_{m+1} - \deg f_i} r_i f_i$

This f cooked up so $\deg f < \deg f_{m+1}$

Thus $f \in J_m \Rightarrow f_{m+1} \in J_m$

contrad. \qed
Hilbert's Nullstellensatz c. 1900

Weak Nullst. k alg closed

Every maximal ideal in $k[x_1, \ldots, x_n]$ is of form $(x_1 - a_1, \ldots, x_n - a_n)$.

Strong Nullst. k alg closed

I is $k[x_1, \ldots, x_n]$ ideal. Then

$$I(\overline{\text{Z}(I)}) = \sqrt{I}$$

i.e.

$$\{\text{assocs in } k[x_1, \ldots, x_n]\} \overset{\text{bij}}{\leftrightarrow} \{\text{rad. ideals in } k[x_1, \ldots, x_n]\}$$

$$X \mapsto I(X)$$

$$\overline{\text{Z}(I)} \leftrightarrow I$$

The WN implies other natural statements:

- Every proper ideal in $k[x_1, \ldots, x_n]$ has a common zero, i.e. $I \subseteq k[x_1, \ldots, x_n] \Rightarrow \overline{\text{Z}(I)} \neq \emptyset$
- Converse: a family of polynomials with no common zeros generates whole $k[x_1, \ldots, x_n]$.
Aside: SN is a generalization of Fund Thm Alg.

First, note

$(f) \in \mathbb{C}[z]$ radical

$\iff f$ has no rep. roots.

SN \Rightarrow FTA because

$I(\mathbb{Z}(f)) = \sqrt{(f)}$ implies

f has a root.

FTA \Rightarrow SN because

f factors into linear.

$\Rightarrow I(\mathbb{Z}(f)) = \sqrt{(f)}$

PT by example:

$f(z) = (z-1)(z-3)^2$

$I(\mathbb{Z}(f)) = I(\{1,3\}) = (z-1)(z-3)$

$= \sqrt{(f)}$.
Both WN & SN fail for k not alg. closed:

\[(x^2 + 1) \text{ radical in } \mathbb{R}[x] \]

since $\mathbb{R}[x]/(x^2 + 1) \cong \mathbb{C}$

But $\mathbb{I}(\mathbb{Z}(x^2 + 1)) = \mathbb{I}(\emptyset) = \mathbb{R}[x]$.
Proof of $\text{WN} \Rightarrow \text{SN}$

"Trick of Rabinowitz"

Say $g \in I(Z(f_1, \ldots, f_m))$

Want g some power $c_{(f_1, \ldots, f_m)}$.

The assumption \Rightarrow a common zero of the f_i is a zero of g.

Thus $f_1, \ldots, f_m, x_{n+1}g - 1$ have no common zeros in \mathbb{A}^{n+1}.

$\text{WN} \Rightarrow (f_1, \ldots, f_m, x_{n+1}g - 1) = k[x_1, \ldots, x_{n+1}]$

$\Rightarrow 1 = p_1f_1 + \cdots + pmf_m + p_{m+1}(x_{n+1}g - 1)$

where $p_i \in k[x_1, \ldots, x_{n+1}]$

Apply the map

$k[x_1, \ldots, x_{n+1}] \rightarrow k(x_1, \ldots, x_n)$

$x_i \mapsto x_i$

$x_{n+1} \mapsto \frac{1}{g}$

$\Rightarrow 1 = p_i(x_1, \ldots, x_n, \frac{1}{g})f_i + \cdots + p_m(x_1, \ldots, x_n, \frac{1}{g})f_m$ in

$= \frac{\text{something in } (f_1, \ldots, f_m)}{g \text{ power}}$
Fact. Each \((x_1-a_1, \ldots, x_n-a_n)\) is maximal.

If \(k[x_1, \ldots, x_n] / (x_1-a_1, \ldots, x_n-a_n) \rightarrow k\)

\[
\begin{align*}
f & \quad \rightarrow \quad f(a_1, \ldots, a_n) \\
1 & \quad \leftrightarrow \quad 1 \\
\end{align*}
\]

This is so done.
Thm. \(k \) = field, \(K \) extension

If \(K \) is fin gen as a \(k \)-alg
then \(K \) is algebraic over \(k \).

Pf of WN. Say \(m = \text{max ideal in} \)

\[R = k[x_1, \ldots, x_n] \]

\[\implies R/m \text{ is a field, fin gen as } k\text{-alg.} \]
(since \(R \) is).

Have \(k \cap m = \{0\} \). (else \(m = R \))

\[\implies \text{image } \bar{k} \text{ of } k \text{ in } R/m \text{ is } = k. \]

Thm \(\implies R/m \text{ alg. ext. of } \bar{k}. \)

\(k \text{ alg closed } \implies R/m = \bar{k} \)

Under \(R \to R/m \)
each \(x_i \mapsto \bar{a}_i \in \bar{k} \)
some \(\bar{a}_i \) image of \(a_i \in k \).

\[\implies m = (x_i-a_i, \ldots, x_n-an) \]

But \(m \) maximal

\[\implies m = m' \]

Hilbert's N'satz

\{ aa's in M^n \} \leftrightarrow \{ \text{rad ideals in } k[x_1, \ldots, x_n] \}

V \mapsto \Pi(V)
Z(V) \leftrightarrow I

Nontrivial part: \(Z \) inj on rad ideals

Weak N'satz Max ideals in \(K[x_1, \ldots, x_n] \) are of form
\((x_1 - a_1, \ldots, x_n - a_n) \)

Lemma. Assume \(k \) alg closed and uncountably infinite.

If \(L \supseteq k \) field ext and \(L \) fin. gen. as \(k \)-algebra

Then \(L \) is algebraic over \(k \).

\(\exists u_1, \ldots, u_r \in L \) so that each elt of \(L \) is a polynomial in \(u_i \) with coeffs in \(k \).

Example \(C(x) \) not alg over \(C \), not fg alg
Lemma. Assume \(k \)-alg closed and uncountably infinite.

If \(L \supseteq k \) field ext. and \(L \) fin. gen. as \(k \)-algebra
Then \(L \) is algebraic over \(k \).

Pf. Suppose \(u \in L \) not algebraic.

1. The set \(\{ u^{-c} : c \in k \} \) uncountable and lin. ind. over \(k \).
 Indeed, any lin. combo
 \[\frac{b_1}{u-c_1} + \ldots + \frac{b_q}{u-c_q} \]
 gives \(u \) as a root of a poly (clear fractions)

2. Let \(u_1, \ldots, u_r \) gens for \(L \) as \(k \)-alg.
 \(\{ u_1, u_2, \ldots, u_r \} \) countable and is a \(k \)-basis for \(L \).
 This contradicts 1.

Lemma is true over arbitrary fields. Need
1. Zariski's Lemma: \(L \) fin. gen. as \(k \)-alg \(\iff L \) fin. gen. as \(k \)-module
2. Noether normalization
Lemma. \(k = \text{field}, \ K = \text{extension} \)

If \(K \) is fin gen as a \(k \)-alg

then \(K \) is algebraic over \(k \).

Proof of WN. Say \(m = \text{max ideal in} \)

\[R = k[x_1, \ldots, x_n] \]

\(\Rightarrow R/m \) is a field, fin gen as \(k \)-alg.

(since \(R \) is).

Have \(k \cap m = \{ 0 \} \). (else \(m = R \))

\(\Rightarrow \) image \(\overline{k} \) of \(k \) in \(R/m \) is \(\cong k \).

Lemma.

\(\Rightarrow R/m \) alg. ext. of \(\overline{k} \).

\(k \) \(\text{alg closed} \Rightarrow R/m = \overline{k} \)

Under \(R \to R/m \)

each \(x_i \mapsto \overline{a}_i \in \overline{k} \)

some \(\overline{a}_i \) image of \(a_i \in k \).

\(\Rightarrow m \cong (x_1-a_1, \ldots, x_n-a_n) \)

\(m' \)

But \(m' \) maximal

\(\Rightarrow m = m' \) \(\square \)
Irreducibility

Basic example

1. $\mathbb{Z}(xy) \subseteq \mathbb{A}^2$
 $\mathbb{Z}(x) \cup \mathbb{Z}(y)$

Say $\mathbb{Z}(xy)$ reducible.

An aav is reducible if it is the union of two distinct, nonempty aav's.

The maximal irreducible closed subsets are the irreducible components.

More examples

2. $\mathbb{Z}(x_1 x_2, x_1 x_3) \subseteq \mathbb{A}^3$
 $\mathbb{Z}(x_1) \cup \mathbb{Z}(x_2 x_3)$

3. $\mathbb{Z}(x^2 - 1) \subseteq \mathbb{A}^1$
 $\mathbb{Z}(x+1) \cup \mathbb{Z}(x-1)$

4. A finite set in \mathbb{A}^n is irreducible if it is not connected.

5. What about \mathbb{A}^n?
Prop. \(X \subseteq \mathbb{A}^n \) aav.

\(X \) irred \(\iff \) \(\mathcal{I}(X) \) prime.

\[\begin{align*}
\text{IF} & \quad \iff \text{Say } \mathcal{I}(X) \text{ prime.} \\
\text{and } X &= X_1 \cup X_2 \\
\text{Then } \mathcal{I}(X) &= \mathcal{I}(X_1) \cap \mathcal{I}(X_2) \\
\mathcal{I}(X) \text{ prime } &\Rightarrow \mathcal{I}(X) = \mathcal{I}(X_1) \text{ wlog}
\end{align*} \]

(If \(P = I \cap J \) then \(I \cap J \subseteq I \cap J = P \Rightarrow P = I \lor J \).

\(\text{(Prime } \Rightarrow \text{ radical) so } SN \Rightarrow \)

\(X = X_1 \).

\(<\Rightarrow> \) Say \(X \) irred & \(fg \in \mathbb{I}(X) \)

Then \(X \subseteq Z(fg) = Z(f) \cup Z(g) \)

\[\begin{align*}
\Rightarrow X &= (Z(f) \cap X) \cup (Z(g) \cap X) \\
\text{irred.} &\Rightarrow X = Z(f) \cap X \\
\Rightarrow X \subseteq Z(f) &\Rightarrow f \in \mathbb{I}(X). \quad \square
\end{align*} \]
Consequences

1. \(\mathbb{A}^n \) irreducible since (0) prime
2. \(f \in k[x_1, \ldots, x_n] \) irreducible
 \[\iff Z(f) \text{ irreducible.} \]

\[
\begin{bmatrix}
\text{If } f = f_1 f_2 \\
Z(f) = Z(f_1) \cup Z(f_2)
\end{bmatrix}
\]

Dictionary

- aav's \(\leftrightarrow \) rad ideals
- irreducible aav's \(\leftrightarrow \) prime ideals
- (in \(A^n \)) pts \(\leftrightarrow \) max ideals
 (in \(k[x_1, \ldots, x_n] \))

Decomposing into irreducibles

- \(k[x_1, \ldots, x_n] \) Noetherian (Hilb. basis thm)
 \[\rightarrow \text{any desc. chain of aav's is eventually stationary.} \]
 (Noetherian property for aav's)

Prop.1: An aav can be written as a finite union of irreducible aav's

- \(X_1, \ldots, X_r \)

Prop.2: If \(X_i \cap X_j \forall i \neq j \) the \(X_i \) unique.

In this case, \(X_i \) called the irreducible components of \(X \).
Prop. 1: An aav can be written as a finite union of irreducible aav's:
\[X = X_1 \cup \cdots \cup X_r \]

2. If \(X_i \neq X_j \) \(\forall i \neq j \), the \(X_i \) are unique. In this case, \(X_i \) called the irreducible components of \(X \).

Proof of 1: Let \(X \) be a minimal counterexample. If there is a counterex, a minimal one exists by Noetherian property.

Since it's a counterex, it's reducible:
\[X = X_1 \cup \cdots \cup X_r \]

But \(X \) minimal \(\Rightarrow \)
\[X_1, X_2 \] finite unions of irreducible's.

2. Say
\[X = X_1 \cup \cdots \cup X_r \]
\[= X'_1 \cup \cdots \cup X'_s \]
\[X_1 \subseteq U X'_i \]

In fact \(X_i \subseteq X_i \), some i.
(Otherwise \(X_i \) reduces.)
Next week: end of Chap 1

- Morphisms = polynomial maps

- Coordinate ring $k[V]$
 \[= \{ \text{poly fns on } V \} \]
 \[= k[x_1, \ldots, x_n] / \mathfrak{I}(V) \]
Morphisms

\(x \in \mathbb{A}^n, \, y \in \mathbb{A}^m \) aav's

\(f: X \rightarrow Y \) is a **morphism** if it's restriction of a polynomial map \(\mathbb{A}^n \rightarrow \mathbb{A}^m \).

i.e. \(\exists \, f_1, \ldots, f_m \in k[x_1, \ldots, x_n] \)

s.t. \(f(x) = (f_1(x), \ldots, f_m(x)) \quad \forall \, x \in X \).

A **morphism** is an **isomorphism** if it has an inverse morphism.

Examples

1. **Affine change of coords** \(\mathbb{A}^n \rightarrow \mathbb{A}^n \)

 Linear map + translation.

 This is \(\cong \iff \) linear map is.

2. \(C = \mathbb{Z}(\ y - x^2) \subseteq \mathbb{A}^2 \)

 \(f: \mathbb{A} \rightarrow C \)

 \(t \mapsto (t, t^2) \)

 \(f^{-1}: C \rightarrow \mathbb{A}^1 \)

 \((x, y) \mapsto x \) isomorphism.

In general, coord fn are morphisms.
Facts about morphisms

1. Morphisms are continuous wrt Zariski topology
 \[f: X \to Y \]
 \[f^{-1}(\mathbb{Z}(h_1, \ldots, h_r)) = \mathbb{Z}(h_1 \circ f, \ldots, h_r \circ f) \]

2. Morphisms do not always map aav's to aav's
 \[\mathbb{Z}(xy-1) \to \mathbb{A}^1 \]
 \[(x, y) \mapsto x \]
 Image is \[\mathbb{A}^1 \setminus 0 \]

3. \[C = \mathbb{Z}(x^3 + y^2 - x^2) \]
 \[f: \mathbb{A}^1 \to C \]
 \[t \mapsto (t^2 - 1, t(t^2 - 1)) \]
 morphism, but not injective:
 \[f(1) = f(-1) \]

4. \[C = \mathbb{Z}(y^2 - x^3) \subseteq \mathbb{A}^2 \]
 \[f: \mathbb{A}^1 \to C \]
 \[t \mapsto (t^2, t^3) \]
 bijective morphism,
 but not \(\cong \). Why? We need a new tool...
Coordinate Rings

\[X = \text{aaa} \]

\[\sim k[X] = \{ f | f : k[x_1, \ldots, x_n] \} \]
\[= \{ \text{poly \ fins \ on \ } X \} \]
\[= \text{coord \ ring \ on \ } X. \]

\[k[X] \text{ is a ring, in fact a } k-\text{algebra}. \]

More:

\[k[X] = k[x_1, \ldots, x_n] / \mathfrak{I}(X) \]

So, if \(X = \mathbb{Z}(xy - 1) \)

\[\{ y \} \in k[X] \quad (!) \]

First examples

1. \(k[\mathbb{A}^n] \cong k[x_1, \ldots, x_n] \)

2. \(k[\mathfrak{p}] \cong k \) (cf proof \((x_1 - a_1, \ldots, x_n - a_n) \text{ maximal} \))

3. \(k[X] \cong k^r \)

\[X = P_1 u \ldots u P_r \]

\[f \mapsto (f(p_1), \ldots, f(p_r)) \]
More examples

4) \(L = \mathbb{Z}(y-mx-b) \)

\[k[L] \cong k[x] \]

First, any poly in \(x,y \)

is equiv to a poly in \(x \)

\[y \sim mx+b \]

\[k[L] \rightarrow k[x] \]

\[[f(x,y)] \rightarrow f(x, mx+b) \]

\[k[x] \rightarrow k[L] \]

\[f(x) \mapsto [f(x)] \]

These are inverses.

5) \(C = \mathbb{Z}(x^2+y^2-z^2) \subseteq \mathbb{A}^3 \) cone

\(k = C \)

exercise: in \(k[C] \)

\((x^3 + 2xy^2 - 2xz^2 + x) \sim (x - x^3)\)
Irreducibility & Coord rings

Prop. X irreducible $\iff k[X]$ integral domain

$\text{PF. } X$ irreducible $\iff \Pi(X)$ prime

$\iff k[x_1,\ldots,x_n]/\Pi(X)$ integral domain

Fact. $k[X]$ gen. by coord fns,

$X \to k$

$(a_1,\ldots,a_n) \mapsto a_i$

hence the name (?)

Twisted cubic

$C = \mathbb{Z}(y-x^2, z-x^3)$

Will show C is irreducible.

$\text{PF #1 } (y-x^2, z-x^3)$ prime.

Use $k[x,y,z] = (k[x,y])[z]$

$k[x,y] = (k[x])[y]$

Suppose $f,g \in (y-x^2, z-x^3)$.

Division alg:

$f(x,y,z) = (z-x^3)f_1(x,y,z) + \text{remainder (const in z)}$

$(z-x^3)f_1(x,y,z) + (y-x^2)f_2(x,y) + f_3(x)$

similar $g(x,y,z) = (z-x^3)g_1(x,y,z) - (y-x^2)g_2 + g_3(x)$

Since $f,g \in (y-x^2, z-x^3)$ $\Rightarrow f_3 = 0$ or $g_3 = 0$
Indeed if \(f_3(x) \) & \(g_3(x) \) both nonzero, can find a point in \(\mathbb{A}^3 \) where \(y-x^2, z-x^3 \) vanish but \(fg \) does not.

Back to the dictionary

\[
\text{sub-aaav's of } X \leftrightarrow \text{rad. ideals in } k[X] \\
y \subseteq X \rightarrow k[Y] \subseteq k[X]
\]

irred \(\leftrightarrow \) prime
pts \(\leftrightarrow \) max ideals.

Pf. 3rd \(\equiv \) thm + prev. dictionary

Next time Every fin gen., reduced \(k\)-alg is some \(k[X] \).
Last time

1. Morphisms $X \to Y$
 - polynomial map

2. Coordinate rings
 - $k[X]$: poly. fns on X
 - $\{ f|_X : f \in k[x_1, \ldots, x_n] \}$
 - $k[x_1, \ldots, x_n] / \Pi(X)$

Wanted to show:

$\mathbb{A}^1 \to \mathbb{Z}(y^2 - x^3)$ not \cong.

Next: A morphism $X \to Y$ gives hom. $k[Y] \to k[X]$

Pullbacks. $X \subseteq \mathbb{A}^n$, $Y \subseteq \mathbb{A}^m$ and:

$f: X \to Y$ morphism.

$\sim \to f_* : k[Y] \to k[X]$

$g + \Pi(Y) \mapsto g \circ f + \Pi(X)$

or $[g] \mapsto [g \circ f]$

Basic facts:

1. f_* is k-alg homom.
2. $(fg)_* = g_* f_*$
3. $f^* an \cong \Rightarrow f_* an \cong$
Basic facts:
1. f^*_* is k-alg homom.
2. $(fg)^*_* = g^*_* f^*_*$
3. $f^* a_n \cong \Rightarrow f^*_* a_n \cong$

Contravariant

In other words, have a functor:

\[\text{aav's} \rightarrow k\text{-algebras} \]

\[X \rightarrow k[[X]] \]

What is the image?

Examples:
1. $\mathbb{A}^1 \cong \mathbb{Z}(y-x^2) \subseteq \mathbb{A}^2$
 \[t \mapsto (t, t^2) \]

Pullback:
\[f: C[x,y]/(y-x^2) \rightarrow C[t] \]
\[g_1(x,y) = x \rightarrow t \]
\[g_2(x,y) = y \rightarrow t^2 \]

This is enough since x, y generate.

Surjective \checkmark

Injective \checkmark

So \cong
2. \(f: A' \rightarrow \mathbb{Z}(y^2 - x^3) \subseteq A^2 \)

\[
t \mapsto (t^2, t^3)
\]

Would be better:

\[
\mathbb{C}[x, y]/(y^2 - x^3) \nleq \mathbb{C}[t]
\]

Joshua's idea: compare transcendence degree over \(\mathbb{C}[x] \).

(Can a transc. ext. of \(\mathbb{C}[x] \) be \(\approx \) to \(\mathbb{C}[x] \)?)

More refined: LHS free module over \(\mathbb{C}[t] \) of rank 2 and RHS rank 1.

Pullback:

\[
\mathbb{C}[x, y]/(y^2 - x^3) \rightarrow \mathbb{C}[t]
\]

\[
x \mapsto t^2
\]

\[
y \mapsto t^3
\]

Not surj: \(t \) not in image

so \(f \) is not an \(\approx \).
Suppose $\Phi : k[x, x^{-1}] \to k[x]$

$\Rightarrow \Phi(1) = 1$
$\Rightarrow \Phi(x) \Phi(x^{-1}) = 1$
$\Rightarrow \Phi(x), \Phi(x^{-1})$ units

$\Rightarrow \operatorname{Im} \Phi \subseteq \{ \text{constant polys} \}$

Next: Which alg's arise?
Defn. An alg is reduced if no nilpotent elts, i.e. no elts \(r \neq 0 \) with \(r^k = 0 \).

Thm
1a. Every \(k[X] \) is a fin gen. reduced \(k \)-alg.
1b. Every fin gen red. \(k \)-alg is a \(k[X] \).
2a. \(f: X \rightarrow Y \) morphism \(\Rightarrow f_*: k[Y] \rightarrow k[X] \) \(k \)-alg homom.

2b. Every \(k \)-alg homom \(R \rightarrow S \) of red fin gen \(k \)-alg is some \(f \) & \(f \) unique up to \(\sim \).

So. The two categories are same (contravariant isomorphism): \(\text{aa} \)'s \(\leftrightarrow \) fg. red in \(\mathbb{A}^n \) overall \(n \) \(\sim \)

Note. In 1950's Grothendieck removed 3 hypotheses: fin gen, red, alg closed
The corresp. geom objects are affine schemes
Choose a "presentation"

\[R = k[y_1, \ldots, y_m] / J \]

\(y_i \) generators
\(J \) relations.
\(J = \ker k[y_1, \ldots, y_m] \to R \)

\(R \) reduced \(\Rightarrow J \) radical.

Let \(Y = Z(J) \subseteq A^m \)

\(SN \Rightarrow k[Y] \cong R. \)
New varieties from old

1. Products
 - Prop. The product of aav's is an aav.

2. Complements of aav's
 - Any $V_f \subseteq \mathbb{A}^n$ aav.
 - $f \in k[V]
 - \sim V_f = V \setminus \text{Z}(f) = \{p \in V : f(p) \neq 0\}$

Examples
- $GL_n k$
- $Polyn = \{\text{polys of deg } n \text{ with distinct roots}\}$

Prop. Any V_f is isomorphic to an affine variety with coord ring

$k[V_f] \cong k[V][f^{-1}] = k[V]_f$

"localization"
rat'1 functions $\frac{\text{poly}}{f^k}$
Prop. Any \(V_f \) is isomorphic to an affine variety with coord ring

\[
k[V_f] \cong k[V][f^{-1}] = k[V]_f
\]

II. Trick of Rabinowitz!

Let \(J = \mathcal{I}(V) \subseteq k[x_1, \ldots, x_n] \)

\(\mathcal{F} \in k[x_1, \ldots, x_n] \quad \mathcal{F} \in [f] \)

Set \(J_{\mathcal{F}} = (J, t\mathcal{F}-1) \subseteq k[x_1, \ldots, x_n, t] \)

We'll show \(V_f \cong W := \mathcal{Z}(J_{\mathcal{F}}) \subseteq \mathbb{A}^{n+1} \)

\[
W \leftrightarrow V_f
\]

\[
(x_1, \ldots, x_n, y) \mapsto (x_1, \ldots, x_n)
\]

Check inverses, check second statement

Example \(V = \mathbb{A}^1 \)

\[
f = x - 1
\]

\[
V_f \quad \mathbb{A}^1
\]
Chapter 2 Projective varieties. Proj space

$\mathbb{P}^n = \text{compactification of } \mathbb{A}^n$

w/ one infinitely distant pt in each direction.

→ compactification of aav's

Precisely:

$\mathbb{P}^n = (k^{n+1} - 0) / k^*$

$= (k^{n+1} - 0) / \text{nonzero scaling}$

= space of lines thru 0

so $x \sim y \iff x = \lambda y \quad \lambda \in k^*$

Write $[(x_0, \ldots, x_n)]$ as $[x_0 : \ldots : x_n]$

"homog. coords"

$n = 1$ pictures over \mathbb{R}

Two pics

\mathbb{P}^1

\mathbb{A}^1

identified

circle

one pt at 1 ↔ vert line

$X_0 = 1.$

X_1

X_0

X_1

$X_0 = 0.$

X_1

X_0

X_1
algebraically:

\[[x_0 : x_1] \]

\[\mathbb{P}^1 = \{ [1 : x_1] \} \cup \{ [0 : 1] \} = \mathbb{A}^1 \cup \mathbb{A}^0 = \text{pt} \]

For \(k = \mathbb{C} \), \(\mathbb{P}^1_{\mathbb{C}} = \text{Riemann sphere} \).

\[= \mathbb{C} \cup \{ \infty \} \]

For \(n = 2 \)

\[\mathbb{P}^2 = \{ [1 : x_1 : x_2] \} \cup \{ [0 : x_1 : x_2] \}

\[= \mathbb{A}^2 \cup \mathbb{P}^1 \]

antipodal pts id'd

\(\mathbb{R}^2 \)

\[\mathbb{P}^1_{\mathbb{R}} \]

Also have lines in \(\mathbb{R}^2 \).

\[\text{line thru } O \]

\[x_0 = 1 \]

\[n \times n \]
In general:
\[P^n = \mathbb{A}^n \cup P^{n-1} \]
\[= \mathbb{A}^n \cup \ldots \cup \mathbb{A}^0 \]

This decomposition is not canonical.

Let \(U_j = \{ [x_0 : \ldots : x_n] : x_j \neq 0 \} \)
\[\implies P^n = U_j \cup U_j^{\perp} \]
\[\mathbb{A}^n \cup P^{n-1} \]

The \(U_j \) form the standard affine cover of \(P^n \).

For \(k = \mathbb{C} \) the \(U_j \) give \(P^n \) structure of a \(\mathbb{C} \) \(n \)-manifold.

Projective subspaces

Images in \(P^n \) of linear subspaces of \(k^{n+1} \).

So a line in \(P^n \) is image of plane in \(k^{n+1} \).

Through any two pts in \(P^n \) there is a line.

Fact. Any two lines in \(P^2 \) intersect.

Pf. Any two planes in \(k^3 \) intersect.
Projective varieties

A projective variety in \(\mathbb{P}^n \) is a common \(\mathbb{O} \)-set of \(f_1, \ldots, f_r \in \mathbb{k}[x_0, \ldots, x_n] \) homog. if all terms have same degree.

Fact. The \(\mathbb{O} \)-set of \(f \)

is well def. in \(\mathbb{P}^n \).

\[x^d f(x) = f(x x) = 0 \]

\(\iff \ f(x) = 0 \)

Note: \(\mathbb{Z}(f) \) in \(\mathbb{A}^{n+1} \) is a cone

Examples

1. \(\mathbb{Z}(0) = \mathbb{P}^n \)
2. \(\mathbb{Z}(1) = \emptyset \).
3. \(\mathbb{Z}(x_0, \ldots, x_n) = \emptyset \).
4. \(\mathbb{Z}(x_0, \ldots, x_n) = \{ \text{polys w/ no const term} \} \)
5. "irrelevant ideal"
6. \(\mathbb{Z}(x-a, x_0, \ldots, x_n-anx_0) = [1 : a : \ldots : an] \)
7. \(\mathbb{Z}(x_0) = "\text{hyperplane at } \infty" \)
8. \(\cong \mathbb{P}^{n-1} \)
Conics

\(X = Z(f) \)

e.g. \(f = x^2 + y^2 - z^2 \)

3 std affine charts
 - circle, hyperbola, hyperbola

Image of
\(\phi : \mathbb{P}^1 \to \mathbb{P}^3 \)

\(\phi([t_0 : t_1]) = \begin{bmatrix} t_0^3 : t_0^2 t_1 : t_0 t_1^2 : t_1^3 \end{bmatrix} \)

This is a det. variety
\(\text{rk} \begin{pmatrix} x_0 & x_1 & x_2 \\ x_1 & x_2 & x_3 \end{pmatrix} \leq 1 \)

\(\sim \) intersection of 3 quadrics.
“proj. rat’l normal curve of deg 3”
exercise: \(\text{Im} \phi \) is the whole variety

Tayesh: 2nd, 3rd cols are multiples of 1st.
(6) $\varphi : \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^3$

$([x_0 : x_1], [y_0 : y_1]) \mapsto [x_0 y_0 : x_0 y_1 : x_1 y_0 : x_1 y_1]$

$\text{Im } \varphi = \mathbb{Z}(z_0 z_3 - z_1 z_2)$

"quadric"

Image of "lines" on left are lines in quadric

e.g. $\varphi (\mathbb{P}^1 \times [1:0]) = \mathbb{Z} (z_1, z_3)$.

Q. Do other lines in $\mathbb{P}^1 \times \mathbb{P}^1$ map to lines? (Tong)

Future

(5) Grassmannians

$G_{r,n} = \{r\text{-dim planes in } k^n\}$

later!

(6) Products of proj. alg. vars.

later!

(7) Compact Riemann surface.

later.

(8) Moduli space.
Homogenization

\(f \in k[x_1, \ldots, x_n] \)

\(\rightsquigarrow h \in k[x_0, \ldots, x_n] \)

homog.

Just add \(x_0 \) as needed.

Example \(f(x,y) = y - x^2 \)

\(\rightsquigarrow h(x,y,z) = yz - x^2 \)

So get the old parabola

\[[0 : 1 : 0] \]

\(\rightsquigarrow \) parabola + pt \(\rightsquigarrow \) circle.

Example 2 is also a homogenization.

Upshot: Any affine variety can be projectivized

\(\rightsquigarrow \) compactness,

more symmetry.
(Some of) HW assignment.

\[\mathbb{C}^n \xrightarrow{\psi} \mathbb{C}^n \]

map given by elem sym polys

Surjective: FTA

Not injective: permuting roots.

Newton: these generate the invariants.

\[(r_1, \ldots, r_n) \mapsto (\sum_i r_i, \sum_{i < j} r_i r_j, \ldots, r_1 \cdots r_n) \]

\[\mathbb{C}^n / \Sigma_n \]

\[\cong \text{symm gp} \]

\[\cong \text{of varieties.} \]

HW #1. Show \(X/G \) is aav. \(G \cup X = \text{aav.} \)

via \(k[X/G] = k[X]^G \) "invariants"

\#2. Show \(\bar{\psi} \) is an \(\cong \).
Projective closure

\(X \subseteq \mathbb{A}^n \text{ aav.} \subseteq \mathbb{P}^n \)

The proj. closure

\(\overline{X} \) is the closure of \(X \) in \(\mathbb{P}^n \) in Zariski topology

Fact? Same as Eucl. closure.

Closure: smallest closed set containing...
So proj closure: smallest proj. var containing....
(or largest homog. ideal...)

Easy: Eucl. closure \(\subseteq \) proj. closure
So: If Eucl closure is a par, it is the proj clos.

Other dir of fact?

Fact. If \(X = \mathbb{Z}_a(I) \) then
\(\overline{X} = \mathbb{Z}_p(Ih) \)
\(Ih = \) ideal gen by homog's of all elts of \(I \).

Write
\(\mathbb{Z}_a, I_a \)
\(\mathbb{Z}_p, I_p \)
to emphasize affine/proj.
Example.

\[X_1 = \mathbb{Z}(x_2 - x_1^2) \quad X_2 = \mathbb{Z}(x_1 x_2 - 1) \]

\[\overline{X_1} = \mathbb{Z}(x_0 x_2 - x_1^2) \quad \overline{X_2} = \mathbb{Z}(x_1 x_2 - x_0^2) \]

\(\{ \text{same!} \} \)

Extra points: Take \(x_0 = 0 \).

\[\ln \overline{X_1} : [0 : 0 : 1] \]
\[\ln \overline{X_2} : [0 : 0 : 1] \quad \text{and} \quad [0 : 1 : 0] \]

Not a coincidence: \(\mathbb{P}^1 \) conic in \(\mathbb{P}^2 \).

Why is \(\overline{X_1} \) actually the proj. closure.
\(\overline{X_1} \) is a proj var containing \(X_1 \)
and \(\overline{X_1} \setminus X_1 \) finite.
more \(X_i \) dense in \(\overline{X_i} \)
or \(\overline{X_i} = \) Euclidean closure of \(X_i \).

Note \([1 : x : x^2] \to [0 : 0 : 1] \)
as \(|x| \to \infty \).

Fact. If \(X = \mathbb{Z}(f) \) then \(\overline{X} = \mathbb{Z}_p(f_h) \)

But if \(X = \mathbb{Z}_a(f, g) \) homog.
\(X \) might not be \(\mathbb{Z}_p(f_h, g_h) \)
ex. example/exercise: \(\mathbb{Z}(y - x^2, z - xy) \)
\[\overline{X} \setminus \mathbb{Z}(wy - x^2, wz - xy) = \overline{X} u \{ w = y = 0 \} \]
Homog. Ideals

Any \(f \in k[x_1, \ldots, x_n] \)

is a sum of homog. terms

\[f = f^{(0)} + \ldots + f^{(m)} \]

and “graded ring”

\[k[x_1, \ldots, x_n] = \bigoplus_{d \geq 0} k[x_1, \ldots, x_n](d) \]

“homog deg \(d \) polys (union 0)"

Lemma. Let \(I \leq k[x_1, \ldots, x_n] \).

TFAE

\(\begin{align*}
\text{1) } & I \text{ gen by homog. elts} \\
\text{2) } & f \in I \Rightarrow f^{(d)} \in I \ \forall \ d.
\end{align*} \)

Such \(I \) called homog.

\[\text{Pf} \ 1 \Rightarrow 2 \quad I = (f_1, \ldots, f_r) \quad \text{(Hilbert BT)} \]

Write \(f_i = \Sigma f_i^{(d)} \rightarrow I = (f_i^{(d)}) \).

\(2 \Rightarrow 1 \quad I = (f_1, \ldots, f_r) \) each \(f_i \) homog.

\((r < \infty \text{ since Noetherian}) \)

\[f \in I \Rightarrow f = \Sigma a_i f_i \quad a_i \in k[x_1, \ldots, x_n] \]

\[\Rightarrow f^{(d)} = \Sigma a_i^{(d-deg f_i)} f_i \in I \quad \square \]

Note. Not all elts of homog ideals are homog.

Note. A poly can always be written as \(\Sigma f_i^{(d)} \) with \(\deg f_i \) all same.

(mult. each \(f_i \) with non-max \(\deg \) by power of \(x_0 \)). \(\text{fix} \)
Fact. 1. $I_{\text{homog}} \Rightarrow \text{rad } I_{\text{homog}}$

2. Intersection, sum, product of homog. ideals is homog.

3. I_{homog} then:

 $I_{\text{prime}} \iff \forall \text{ homog } f, g$

 have $(fg \in I \iff f \lor g \in I)$

(If I_{homog}, can test primeness only with homog elts)

Consequence: Zariski top. works.

for pav's.
Proj Nullstellensatz

Thm. k alg closed

$I \subseteq k[x_0, \ldots, x_n]$ homog.

1. $Z_p(I) = \emptyset \iff (x_0, \ldots, x_n) \subseteq \text{rad} I$

2. $Z_p(I) \neq \emptyset \Rightarrow \Pi_p(Z_p(I)) = \text{rad} I$

So:

\[
\{ \text{pav's in } \mathbb{P}^n \} \quad \iff \quad \{ \text{rad. homog. ideals in } k[x_0, \ldots, x_n] \} \quad \setminus \quad \{ \text{irrelevant ideal} \}
\]

\[\text{Pf of Thm:}\]

1. $Z_p(I) = \emptyset \iff Z_a(I) \subseteq \{0\} \iff \text{rad} I = \Pi_a Z_a(I) \supseteq (x_0, \ldots, x_n) \text{ (affine SN)}$

2. Assume $Z_p(I) \neq \emptyset$.

\[f \in \Pi_p(X) \iff f \in \Pi_a C(X) = \Pi_a Z_a(I) = \text{rad} I \text{ (affine SN)}\]

\[\square\]

Pf uses cones:

For $X \subseteq \mathbb{P}^n$ cone $C(X)$ is corresponding union of lines in k^{n+1}.
Proj closure

Thm \(X \subseteq \mathbb{P}^n \subseteq \mathbb{A}^n \) an

\[I = \mathbb{I}_a(X) \]

\[\Rightarrow \overline{X} = Z_p(I_h) \subseteq \mathbb{P}^n \]

Pf: \[\forall y \in \overline{X} \text{ say } G \in \mathbb{I}_p(\overline{X}) \]

\[G \in k[x_0, \ldots, x_n] \text{ homog.} \]

\[\Rightarrow G = 0 \text{ on } (\overline{X} \cap U_0) = \overline{X} \setminus \{x_0 \neq 0\}. \]

\[\Rightarrow g = G|_{x_0=1} \text{ is } 0 \text{ on } X \]

\[g \in k[x_1, \ldots, x_n] \]

\[\Rightarrow g \in \mathbb{I}_a(X) = I \]

\[\Rightarrow g_h \in I_h \]

\[\Rightarrow G = g_h x_0^t \text{ some } t. \]

\[G = x_0^3 x_1 + x_0^2 x_1 x_2 + x_0^4 \]

\[g = x_1 + x_1 x_2 + 1 \]

\[g_h = x_0 x_1 + x_1 x_2 + x_0^2 \]

\[\Rightarrow G \in I_h \text{ (since } g_h \in I_h \text{).} \]

Thus \(\mathbb{I}_p(\overline{X}) \subseteq I_h \) \(\because \overline{X} \text{ closed.} \)

\[\Rightarrow Z_p(I_h) \subseteq Z_p \mathbb{I}_p(\overline{X}) = \overline{X} \]

\(\square \)
Example

\[
x = \mathbb{Z}(x, y-x^2) = \{0\} \leftrightarrow [1:0:0] \text{ in } \mathbb{P}^2
\]

\[\bar{x} = x \mapsto Uz\]

\[\not\mathbb{Z}(x, y^2-x^2) = \{[1:0:0], [0:0:1]\}\]

\[\text{Cor. } X = \mathbb{Z}(f) \Rightarrow \bar{X} = \mathbb{Z}(f_h)_p\]

Pf. (f) = \{fg : g \in k[x_1, \ldots, x_n]\} \quad f_h

\[\Rightarrow \bar{X} = \mathbb{Z}_p((fg)_h : g \in k, (x, \ldots, x_n))\]

\[= \mathbb{Z}_p(f_h g_h : g \in k, [x, \ldots, x_n])\]

\[= \mathbb{Z}_p(f_h) \quad \square\]

Cor of Proj Null

\[
\begin{align*}
\text{irred. proj vars} & \quad \leftrightarrow \quad \text{irred affine vars} \\
Y \subseteq \mathbb{P}^n & \quad \leftrightarrow \quad X \subseteq \mathbb{A}^n \\
Y \not\subseteq \mathbb{Z}(x_0) & \quad \Rightarrow \quad \bar{X} \mapsto X \subseteq \mathbb{A}^n \subseteq \mathbb{P}^n \\
Y & \mapsto Y \cap U_0 \subseteq \mathbb{A}^n
\end{align*}
\]

Why you need irreducible: (Toussel)

\[
X_0 X_2 - X_1^2 \\
X_0 X_2 - X_1^2 X_6
\]

Pf hint: polys \leftrightarrow polys. (homog & dehomog).
Morphisms

Naive defn: polyn. maps.

Example $C = \mathbb{Z}(xz - y^2)$

$\phi: \mathbb{P}^1 \rightarrow C \subseteq \mathbb{P}^2$

$[s:t] \mapsto [s^3:st:t^2]$

- ϕ is well def
- $\text{im } \phi = C$

(This is a Veronese map)

In U_t chart, set $u = s/t$

$u \mapsto (u^2, u) \in U_z$

In U_s: $v \mapsto (v, v^2) \in U_x$

These are affine morphisms.

Now for other direction...

$\psi: C \rightarrow \mathbb{P}^1$

$[x:y:z] \mapsto \begin{cases} [x:y] \text{ on } U_x \\ [y:z] \text{ on } U_z \end{cases}$

Defined on all of C: $x = z = 0 \Rightarrow y = 0$.

Well def. on C: $x, z \neq 0 \Rightarrow y \neq 0$ so

$[x:y] : [yx:y^2] = [xy:xz] = [y:z]$

On U_x, U_z: ψ is affine morphism

but ψ is not globally polynomial.

No way to write ψ as $[f_1:f_2]$

(exercise?)
Aside: Stereographic proj.

The map \(\psi \) can be defined as follows.

Let \(Q = [1:0:0] \in C \) (pt at \(\infty \))

\[L = Z(x^2 + y^2) \]

line in \(\mathbb{P}^2 \)

For \(P = [a:b:c] \in C \), \(P \neq Q \)

The line \(PQ \) is \(yc = zb \)

and \(PQ \cap L = \psi(P) = [0:b:c] \)

We want (need?) this to a morphism, but not a poly.
From last time

Example: \(C = \mathbb{Z}(xz - y^2) \)

\[q: \mathbb{P}^1 \to C \subseteq \mathbb{P}^2 \\
[s: t] \mapsto [s^2: st: t^2] \]

\[\psi: C \to \mathbb{P}^1 \]

\[[x: y: z] \mapsto \begin{cases} [x: y] \text{ on } U_x \\ [y: z] \text{ on } U_z \end{cases} \]

Today: Morphisms, birational maps

Correspondence

PAV's \(\leftrightarrow \) extensions of \(k \).

Morphisms of PAVs

\(V \subseteq \mathbb{P}^n, W \subseteq \mathbb{P}^n \) pav's

\(f: V \to W \) is a morphism if

\(\forall p \in V \exists \text{ homog polys } f_0, \ldots, f_m \in k[x_0, \ldots, x_n] \) s.t. for some nonempty open nbhd of \(p \)

\(f|_U \) agrees with

\[U \to \mathbb{P}^m \\
q \mapsto [f_0(q): \ldots : f_m(q)] \]

e.g. \(q, \psi \) above.
Morphisms of \(\mathbb{PAVs} \)

\(V \subseteq \mathbb{P}^n, \ W \subseteq \mathbb{P}^n \) pav's

\[f: V \rightarrow W \text{ is a morphism if} \]

\(\forall \ p \in V \ \exists \ \text{homog polys} \]

\(f_0, \ldots, f_m \in k[x_0, \ldots, x_n] \) s.t. for

some nonempty open nbhd of \(p \)

\[f|_U \text{ agrees with} \]

\(U \rightarrow \mathbb{P}^n \)

\[q \rightarrow [f_0(q) : \ldots : f_m(q)] \]

e.g. \(\varphi, \psi \) above.

Notes

1. Can also allow rat'l fn's (clear denoms).

2. To have a well-def map, \(f_i \) must have same deg.

3. Also, \(f_i \) must not all vanish at a single pt.

4. Implicit: different fn's agree on overlaps (since \(f \) globally def).

Isomorphism: if \(f \) inverse morphism.
Examples

1. ϕ, ψ above

 $\mathbb{P}^1 \rightarrow C = \text{parabola}$

 are isomorphisms

 e.g. $[s:t] \mapsto [s^2:st:t^3]$

 $\psi|_{Ux} \mapsto [s^2:st] = [s:t]$

2. Any homog rat'f $h: X \rightarrow k$
 can be considered a morphism ϕ, ψ homog

 $\phi: X \rightarrow \mathbb{P}^1$. If $h = f/g$, same deg

 $\phi([x_0: \ldots : x_n]) = [f(x_0, \ldots, x_n) : g(x_0, \ldots, x_n)]$

3. Linear change of coords on \mathbb{P}^n.
 Later: All isoms $\mathbb{P}^n \rightarrow \mathbb{P}^n$ are of this form.

 Conseq 1. $H = \text{hyperplane in } \mathbb{P}^n$
 $\Rightarrow H \cong \mathbb{P}^{n-1}$

 (using: restriction of \cong is \cong)

 Conseq 2. All conics in \mathbb{P}^2 are \cong.

 Conics \leftrightarrow symm bilin \leftrightarrow quad \leftrightarrow 3×3 matrices

 $Z(x^2 + 4xy + 3y^2) \leftrightarrow (x, y, z) \leftrightarrow \begin{pmatrix} 1 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix} (x, y, z)$

 But: All symm. \mathbb{C}-matrices diagable...
Coord ring of PAVs

Can define:

\[k[X] = k[x_0, \ldots, x_n] / \mathbb{P}_p(X) \]

Issue #1. The elts of \(k[X] \)
don't give well-def fn's on \(X \).
In fact: Every rat fn on \(X \)
is const.

For \(k = \mathbb{C} \) this is Liouville's thm
(bounded holom fn's are const)
plus fact that \(X \) compact.

Issue #2. Can have \(X \cong Y \)

\[k[X] \neq k[Y] \]

E.g. \(X = \mathbb{P}_p(x) \subseteq \mathbb{P}^2 \sim k[X] \cong k[y, z] \)
\(Y = \mathbb{P}_p(x^2+y^2-z^2) \cong \mathbb{P}^1 \) UFD

\[\sim k[Y] \cong k[x, y, z] / (x^2+y^2-z^2) \]
not UFD.

\(z \cdot z = (x+iy)(x-iy) \)

Fixes:
1. \(k(Y) \)
2. rational maps
Rational maps

\(X \subseteq \mathbb{P}^n, \ Y \subseteq \mathbb{P}^m \)

A rational map

\(\varphi : X \dashrightarrow Y \)

is an eq class of expressions

\([f_0 : \ldots : f_m] \) s.t.

1. \(f_0, \ldots, f_m \in k[x_0, \ldots, x_n] \)
 homog. of same deg.

2. \([f_0(p) : \ldots : f_m(p)] \neq [0 : \ldots : 0]\)
 some \(p \in X \)

3. \(\forall p \in X \) if \([f_0(p) : \ldots : f_m(p)]\)
 is defined, it is in \(Y \).

Two expressions are equiv. if they are equal where both defined.

example: \(\varphi, \psi \) from start of class:

\([x:y] \mapsto \{ [x:y:z] \text{ on } U_x \}
\{ [y:z] \text{ on } U_z \}

Q. Why transitive?

Say \(\varphi \) is regular at \(p \) if

\(\varphi(p) \) defined for some expression representing \(\varphi \).

So \(\varphi \) is not defined at

non-regular pts.

Rat. maps are like morphisms, but
only def on open subset of \(X \).
Example Cremona transformation.

\[\varphi: \mathbb{P}^2 \rightarrow \mathbb{P}^2 \]

\[[x:y:z] \mapsto [yz:xz:xy] \]

Not def. at \([0:0:1]\) or any pt with two zeros.

In other words: \(\mathbb{Z}(x,y) \cup \mathbb{Z}(y,z) \cup \mathbb{Z}(x,z) \)

Problem with rat'l maps:

can't rec. compose \(f \circ g\)

if \(g(\text{dom } g) \cap \text{dom } f = \emptyset\).

Dominant maps

\[\varphi: X \rightarrow Y \text{ is dominant} \]

if \(\varphi(\text{dom } \varphi)\) nonempty, open in \(Y\)

If \(\varphi\) dominant, can compose \(\psi \circ \varphi\)

Example Cremona map is dominant

and \(\varphi \circ \varphi \simeq \text{id.}\)

\[[x:y:z] \mapsto [yz:xz:xy] \mapsto [x^2yz:xy^2z:xyzt^2] = [x:y:z] \text{ if } x,y,z \neq 0. \]
Field of rat'l fns

\[k(X) = \{ \frac{f}{g} : f, g \in k[x_0, \ldots, x_n] \text{ homog of same deg} \} / \sim \]

\[f_1/g_1 \sim f_2/g_2 \text{ if } f_1g_2 - g_1f_2 \in \mathbb{I}_P(X) \]

~ Well-def fns on \(X \) (open subset of \(X \))

\[g \neq 0. \]

Thm

A rat'l map \(\phi : X \rightarrow Y \) is birational (has rat'l inverse) if \(\phi \) dominant & \(\phi^* \text{ is } \sim \)

\[\iff \phi \text{ dominant} \& \phi^* \text{ is } \sim \]

2. \(X, Y \) birat. equiv \iff \(k(X) \cong k(Y) \)

So: equiv of categories

\[\{ \text{irred. quasi-proj. vars} \} \leftrightarrow \{ \text{field exts of } k \text{ w/ birat. maps w/ } k\text{-homoms.} \} \]
From last time...
A pos. criterion for dominance

Lemma. \(\varphi : X \to Y \) ratio map btw proj vars, \(Y \) irreducible. If \(\exists Z \subseteq Y \) par s.t. \(\text{im } \varphi \) contains \(Y \setminus Z \) then \(\varphi \) is dom.

Defn of dominant: \(\text{im } \varphi \) not contained in subvar (assuming \(Y \) irreducible).

Proof of Lemma. Follow your nose.
Contradict irreducibility.

\[\text{image} \]

\[\text{open} \]

??

\[\text{dense.} \]

\[\text{in } Z \text{ subsp. top.} \]

(From last time)
Chap 3 Classical constructions
(Veronese, Segre, Grassmannian).

Veronese Maps

$k[x_0, \ldots, x_n](d) = \{ \text{deg } d \text{ homog } \}
\subseteq k\text{-vect sp on the } \binom{d+n}{n}
\text{monomials of deg } d.

V_d: \mathbb{P}^n \rightarrow \mathbb{P}^m
[\ldots [x_0 : \ldots : x_n] \mapsto [x_0^d : \ldots]
\text{all deg } d \text{ monomials}
in x_0, \ldots, x_n.

- V_d is well def \(\checkmark \)
 (all deg d, don't all vanish)

- V_d is injective.
 look at $x_0^{d-1} X_i$ coords.
 where $X_0 \neq 0$.

\[\begin{bmatrix} x_0^d : x_0^{d-1} : x_1 : x_0^{d-1} : x_2 : \ldots \end{bmatrix}
\sim \begin{bmatrix} x_0 : x_1 : x_2 \ldots \end{bmatrix} \]
Examples

1. \(n=1, d=2 \)
 \[V_2 : \mathbb{P}^1 \to \mathbb{P}^2 \]
 \[[s:t] \mapsto [s^2: st: t^3] \]
 \(W_{1,2} = \text{im} \, V_2 = \mathbb{Z}(xz-y^2) \)
 & \(V_2 \) is \(\cong \) onto image.

2. \(n=1, d=3 \)
 \[V_3 : \mathbb{P}^1 \to \mathbb{P}(4) - 1 = \mathbb{P}^3 \]
 \[[s:t] \mapsto [s^3: s^2t: st^2: t^3] \]
 \(W_{1,3} = \text{im} \, V_3 = \text{rat.'l normal curve of deg} \, 3 \)
 = proj clos. of twisted cubic:

\[W = \mathbb{Z}(xw-y^2, y^2-xz, wy-z^2) \]

Easy: \(\text{im} \, V_3 \subseteq W \)

Hard: \(W \subseteq \text{im} \, V_3 \) (Arrondo)
Chris: maybe direct? Proj vers.

3. \(n=1, d \)
 \(\text{im} \, V_d = \text{rat.'l norm. curve of deg} \, d \)
 = Vanish. set of \(2 \times 2 \) det's
 \((Z_0, d \quad Z_1, d-1 \ldots Z_{d-1}, 1) \)
 \((Z_1, d-1 \quad Z_2, d-2 \ldots Z_{d}, 0) \)

\[Z_{ij} \leftrightarrow s^j t^i \quad i+j = d \]

Check: \(Z_{i,j} \cdot Z_{k,l} = Z_{i+k, j+l} \)
4. Veronese surface

\[\nu_2 : \mathbb{P}^2 \rightarrow \mathbb{P}(\frac{4}{2}) \cong \mathbb{P}^5 \]

\[[s : t : u] \mapsto [s^2 : t^2 : u^2 : st : su : tu] \]

\(\text{Im} \nu_2 \) is van set for 2x2 minors of

\[\begin{pmatrix} z_0 & z_3 & z_4 \\ z_3 & z_1 & z_5 \\ z_4 & z_5 & z_2 \end{pmatrix} \] (rank 1 condition)

For general deg 2:

\(\text{Im} \nu_2 \) = van set for 2x2 minors of

\[\begin{pmatrix} Z_{i,j} \end{pmatrix} \text{ symmetric} \]

\[Z_{i,j} \leftrightarrow X_{i-1} X_{j-1} \]
Image of Veronese

Let $W = \text{im } Vd (= V_d, d)$, $I = (i_0, \ldots, i_n)$

Let $x^I \leftrightarrow x_0^{i_0} \cdots x_n^{i_n} \leq i_j = d$

Prop. W is vanish. set of

$$\{ x^I x^J - x^K x^L : I + J = K + L \}$$

Q. Can this be written in terms of determinants?

A. Yes? $n+1$ rows $d+1$ cols

Q. Proof of Prop?

Prop. $V_d : \mathbb{P}^n \rightarrow W$ is \cong onto image.

Pf. Construct inverse.

On each pt of W at least one x_i^d is nonzero.

$\rightarrow Ux_i$ cover W

Define $Ux_i \rightarrow \mathbb{P}^n$

$x \mapsto "x_j x_i"$ coords

as in proof of injectivity.

These agree on overlaps, give inverse to Vd
A possible hint for proving the

Prop:
\[\Theta : k[x^I] \longrightarrow k[x_0, \ldots, x_n] \]

Show \(\ker \Theta \) is generated by the \(x^I x^J - x^k x^L \).
Hypersurface Sections

\(f = \text{nonzero poly of deg } d \geq 1. \)
\(\leadsto Z(f) = \text{hypersurf of deg } d. \)

For \(X = \text{par}, Z(f) \cap X \) called a hypersurf. section.

Thm. \(X \setminus (Z(f) \cap X) \) is an affine alg var. (if not \(\emptyset \))

Application.

\(\text{Polyn}_{/\sim} = \{ \text{polys of deg } n \text{ with } \exists / \text{scale}. \}
\)
\(\text{nonzero discriminant} \)

is affine. \(\downarrow \text{homog: } \Pi(X_i - X_j) \)

\(\text{Pf for } d = 1 \quad Z(f) = \text{hyperplane}, \)
\(\text{WLOG } x_0 = 0. \)

\(\text{Pf of general } d \quad \text{Apply } \text{Vd} \)

hypersurf \(Z(f) \leadsto \text{hyperplane}. \)
apply \(d = 1 \) case. use fact that \(\text{Vd (variety)} = \text{proj var} \)

(next page).

example \(. \quad f = x^2 - 3yz \leq \mathbb{P}^2 \)

This \((x^2) - 3(yz) \) in Veronese coords \(\leadsto \text{linear!} \)
Images of varieties

Prop. \(X \subseteq \mathbb{P}^n \) is pav

\[\Rightarrow V_d(X) \] is pav any \(d \).

\[\text{If by example (Hamm's)} \]

\[X = \mathbb{Z}(x_0^3 + x_1^3 + x_2^3) \]

multiply by all \(x_i \) to

get 3 polys of deg 2 \times 2

\[X = \mathbb{Z}(x_0^4 + x_0 x_1^3 + x_0 x_2^3, \]

\[x_1 x_0^3 + x_1^4 + x_1 x_2^3, \]

\[x_2 x_0^3 + x_2 x_1^3 + x_2^4) \]

Apply \(V_2 \rightarrow 3 \) quadratics.

But \(\text{Im} V_2 \) is van set of 6 quadratics.

So \(\text{im } X \) is van set of 9 quadratics.
Q. Suppose $Z \subseteq \mathbb{P}^n$ dense & $Z =$ image of a morphism on q.p. var

Then Z open?

Optional homework:
1. above
2. Image of $Vd =$
 $Z(x^I x^J - x^K x^L)$
Segre Map

Goal: products of par's are par's.

easy for affine space since $\mathbb{A}^m \times \mathbb{A}^n = \mathbb{A}^{m+n}$

Note $\mathbb{P}^m \times \mathbb{P}^n$ not even homeo to \mathbb{P}^{m+n}

Identify $\mathbb{P}^{(m+1)(n+1)-1}$ with $M_{m+1,n+1}(k)/\text{scalar}$.

Define $\varphi_{m,n}: \mathbb{P}^m \times \mathbb{P}^n \rightarrow \mathbb{P}^{(m+1)(n+1)-1}$

\[
([x_0: \ldots : x_m], [y_0: \ldots : y_n]) \mapsto \\
\left(\begin{array}{c}
\frac{x_0y_0}{x_0y_0} \\
\vdots \\
\frac{x_my_0}{x_my_0} \\
y_1 \ldots y_n
\end{array}\right) = \\
\left(\begin{array}{c}
x_0 \\
\vdots \\
x_m \\
y_1 \ldots y_n
\end{array}\right)
\]

$\text{Im } \varphi_{m,n} = \text{Segre variety, "outer product"}$

Use homog coords $Z_{ij} \leftrightarrow x_i y_j$
Example \(\varphi_{1,1} : \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^3 \)

\[
([x_0 : x_1], [y_0 : y_1]) \mapsto \left[\begin{array}{c} x_0 y_0 \\ x_0 y_1 \\ x_1 y_0 \\ x_1 y_1 \end{array} \right]
\]

Note: \(\det = 0 \implies \operatorname{rk} \leq 1 \).
Also \(\operatorname{rk} \neq 0 \implies \operatorname{rk} = 1 \)
Thus \(\varphi_{1,1} \) well def &

\[\operatorname{Im} \varphi_{1,1} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid \det = 0 \right\} \]

(in lin alg: all rank 1 matrices are outer products)

Claim: \(\varphi_{1,1} (\mathbb{P}^1 \times pt) \) is linear

\(\iff \) plane in \(\mathbb{P}^4 \)

\(\mathbb{P}^1 \times [1 : b] \)

\[
\varphi_{1,1} \left(\begin{array}{c} x_0 \\ x_1 \end{array} \right) = \begin{pmatrix} x_0 b & x_0 \\ x_1 b & x_1 \end{pmatrix}
\]

\[Z_{01} = b Z_{00}, \quad Z_{11} = b Z_{10} \]

Intersection of 2 3-planes in \(\mathbb{P}^4 \).
Prop. \(\varphi_{m,n} \) injective.

Pf. Let \(M = (m_{ij}) = \varphi_{m,n}(a,b) \)

WLOG \(a_0 = b_0 = 1 \Rightarrow m_{00} = 1 \)

Recover \(a, b \) from first col, row resp. \(\square \)

Prop. \(\text{Im} \ \varphi_{m,n} = \{ \text{rank 1 matrices} \} / \text{scale}. \)

Pf. Use above lin alg fact or:

Say \(\text{rk} \) of \(M = (m_{ij}) = 1 \)

Scale so \(m_{00} = 1 \)

\(\forall \ k, l \neq 0 \ \ m_{kl} = m_{00}m_{kl} \) (is \(m_{00} \) 1st)

Take \(a, b \) to be first col/row.

Algebraic structure on \(\mathbb{P}^m \times \mathbb{P}^n \)

\(\varphi_{m,n} \) gives \(\mathbb{P}^m \times \mathbb{P}^n \) an alg.

structure:

- varieties in \(\mathbb{P}^m \times \mathbb{P}^n \)
 are intersections of vars
 in \(\mathbb{P}^N \) with \(\text{Im} \ \varphi_{m,n} \)
 (subspace topology)

- poly fsns on \(\mathbb{P}^m \times \mathbb{P}^n \)
 are poly fsns on \(\text{Im} \ \varphi_{m,n} \)
Prop. Under this defn, subvarieties of $\mathbb{P}^n \times \mathbb{P}^n$ are zero sets of bihomog. polys.

* if x_i, y_i are coords on $\mathbb{P}^n, \mathbb{P}^n$, each monomial has fixed deg in x_i & fixed deg in y_i. If the deg's are same, say the bihomog. poly is balanced.

Pf. Given subvar of Segre var: $Z(f_1, \ldots, f_r)$
Each f_i pulls back to balanced poly in x, y. If $\deg f_i = d_i$, pullback has bi-degree (d_i, d_i)
eq \varphi_{m,n}(Z_{00} - Z_{01}Z_{02}) = (x_0y_0)^2 - (x_0y_1)(x_0y_2)$

\[Z(\varphi_{m,n}(f)) \rightarrow \varphi_{m,n} \downarrow \quad \text{pullback} \]

\[\text{subvars} \quad \text{subvars} \]
Other direction: Given
\(f_1, \ldots, f_r \) bihomog. in \(x_i, y_i \)
can make each balanced
w/o changing zero set (cf last lecture):
replace \(f_i \) with
\[\{ y_0 f_i, \ldots, y_n f_i \} \]

Notice: There are many more
varieties in \(\mathbb{P}^m \times \mathbb{P}^n \) than
just products of varieties:
product of vars \(\leftrightarrow \) polys factorable as
\((\text{poly in } x) \cdot (\text{poly in } y) \).

• Another way to define products
of proj vars:
\[k[x \times y] = k[x] \otimes k[y] ? \]
(Probably
Maybe with \(k(x) \)?)

\[X \times Y \text{ is a categorical product} \]
(satisfies univ property).
Given \(\ell_x : Z \rightarrow X \)
\(\ell_Y : Z \rightarrow Y \)
\[f \quad \ell : Z \rightarrow X \times Y \]
s.t. \(\Pi_x \circ \ell = \ell_x \) same for \(y \).
Example. Twisted cubic.

\[C = \text{image of} \quad [s:t] \mapsto [s^3:s^2t:st^2:t^3] \]

Observe \(C \subseteq \text{Segre}_{1,1} \subseteq \mathbb{P}^3 \).

\[\det (s^3, s^2t, st^2, t^3) = 0. \]

Besides the eqn defining Segre_{1,1}, there are 2 polys defining \(C \) in \(\mathbb{P}^3 \):

1. \(\mathbb{Z}_{00} \mathbb{Z}_{10} - \mathbb{Z}_{0}^2 \)
2. \(\mathbb{Z}_{01} \mathbb{Z}_{11} - \mathbb{Z}_{10}^2 \)

1. Pulls back to \(C \) union a line:

\[x_0 y_0 x_1 y_0 - (x_0 y_1)^2 \]

\[= x_0 (y_0^2 x_1 - x_0 y_1^2) \underset{\text{line } x_0 = 0}{\longleftrightarrow} \mathbb{A} \mathbb{Z}(f) \]

Check: \(q_{1,1} \) maps \(\mathbb{A} \mathbb{Z}(f) \) bij to \(C \).
Coord-free descriptions of \(V_d \) & \(\varphi_{m,n} \)

Similarly \(\varphi_{m,n} \) comes from
\[
K^{m+n} \times K^{n+1} \rightarrow (K^m)^{\otimes (k^{n+1})}
\]

3 natural map
\[
k^{n+1} \rightarrow \text{Sym}^d(k^{n+1})
\]

\(v \mapsto v^d \)

Projectivizing gives \(V_d \)

e.g. \(\nu_1 : \mathbb{P}^1 \rightarrow \mathbb{P}^2 \)
\[
k^2 \rightarrow \text{Sym}^2 k^2
\]
\[
e_1, e_2 \quad \rightarrow \quad e_1^2, e_1 e_2, e_2^2
\]
\[
(xe_1 + ye_2) \mapsto (xe_1 + ye_2)^2 = x^2(e_1^2) + xy(e_1 e_2) + y^2(e_2^2)
\]

\[
\text{Sym}^d(V) = V^{\otimes d}/\text{rearranging terms}
\]
Grassmannian

\[V = k^n \]
\[\text{Gr}_r_n = \text{Gr}_r(V) = \{ \text{r-dim subsps of } V \} \]
e.g. \[\text{Gr}_{1,n} = \mathbb{P}^{n-1} \]

Today: \(\text{Gr}_r_n \) is a proj av.

So: The "moduli/parameter space of r-dim lin. varieties is a variety"

Topology aside
\[B = \text{space.} \]
An r-plane bundle is a (bigger) space so "over" each \(b \in B \), have r-plane.

Examples:
1. \(B = S^1 \) \(r = 1 \)

\[S^1 \times \mathbb{R} \]
open annulus.

2. \(M = \text{Smooth manifold} \)
\[TM = \text{r-plane bundle over } M \]
open Mobius band.
Amazing fact:

\[\{ r\text{-bundles over } B \} \overset{\sim}{\leftrightarrow} \{ B \to \text{Gr}, \infty \} \]

Why? \(\text{Gr}, n \) (and \(\text{Gr}, \infty \)) have a canonical \(r \)-plane bundle \(E \) over them.

\[E \subseteq \text{Gr}, n \times k^n \]

\[\{ (W,v) : v \in W \} \]

Example. \(G_{1,2} \; k = \mathbb{R} \).

and given \(B \to \text{Gr}, n \)

can pull back the bundle over \(\text{Gr}, n \).
Back to the goal: Gr, n is par.

Direct approach

We define $\text{Gr}, n \rightarrow \mathbb{P}^{(\frac{n}{r})-1}$

Given $W \in \text{Gr}, n$

\twoheadrightarrow basis V_1, \ldots, V_r

\twoheadrightarrow $r \times n$ matrix

\twoheadrightarrow $\binom{n}{r}$ minors $\in \mathbb{K}^{(\frac{n}{r})}$

Different bases give $r \times n$ matrices that differ by mult on left by invertible $r \times r$ matrix A

This changes all minors by $\det A$.

\leadsto well def pt in $\mathbb{P}^{(\frac{n}{r})-1}$.

Need to show:

- injective
- image is variety.

For latter, show the image satisfies Plücker relations:

Denote by $M_{i_1 \ldots i_r}$ the minor...

Given $i_1 < \ldots < i_{r-1}$

$j_1 < \ldots < j_{r+1}$

$$0 = \sum_{l=1}^{r+1} (-1)^l M_{i_1 \ldots i_{l-1} j_l} M_{i_1 \ldots i_{l-1} j_{r+1}}$$

\leadsto many quadrics
Examples

\[W \in G_{1,3} \quad W = \text{Span} \{(\frac{a_0}{a_1}, \frac{a_2}{a_2})\} \]

\[\sim (a_0, a_1, a_2) \]

minors: \(a_0, a_1, a_2 \).

\[W \in G_{2,3} \quad W = \text{Span} \{a, b\} \]

\[\sim (a_0, a_1, a_2) \]

\[\sim (b_0, b_1, b_2) \]

minors \(\leftrightarrow \) cross product.

\[\text{Pl"ucker: } (-1) M_{01} M_{02} \]

\[\text{Can see injectivity in both cases.} \]

Observation (1on): \(G_{1,n} \cong G_{n-1,n} \)

\[G_{r,n} \cong G_{n-r,n} \]

First nontrivial Pl"ucker relation: \(G_{2,4} \)

\[M_{12} M_{34} - M_{13} M_{24} + M_{14} M_{23} \]

single defining poly.

Can see injectivity in both cases, \& surjectivity to \(\mathbb{P}^2 \).
Second approach: Wedge products

\[V = \text{vect sp. over } k \]

\[V \otimes r = V \times \ldots \times V \text{ /multilinearity.} \]

\[= \{ \text{finite sums of } v_1 \otimes \ldots \otimes v_r \} \]

subject to

\[(av_1 + a'v_1') \otimes v_2 \otimes v_3 \]

\[= a v_1 \otimes v_2 \otimes v_3 + a' v_1 \otimes v_2 \otimes v_3 \]

Why? \{multilinear maps \(V^r \rightarrow W \}\]

\[\leftrightarrow \{ \text{linear maps } V^\otimes r \rightarrow W \} \]

Next...

\[\Lambda^r V = V \otimes r \text{ /alternating.} \]

\[= \{ \text{finite sums } v_1 \Lambda \ldots \Lambda v_r \} \]

subject to multilinearity as above and: swapping two entries gives -1

So: \[v_1 \Lambda v_2 \Lambda v_3 = -v_2 \Lambda v_1 \Lambda v_3 \]

and \[v_1 \Lambda v_1 \Lambda v_2 = -v_1 \Lambda v_1 \Lambda v_2 \]

\[\Rightarrow v_1 \Lambda v_1 \Lambda v_2 = 0 \]

(char \(k \neq 2 \))
Why?
1. \{alt. multilin. maps \(V^r \rightarrow W \}\)
\[\Leftrightarrow \{\text{lin maps } \Lambda^r V \rightarrow W \}\]
2. \(\Lambda^r k^n \cong k \) \(\Rightarrow \) determinants exist and are unique.
3. Area functions in \(k^n \)
 \[
 (e_1 + e_2) \wedge e_3 = e_1 \wedge e_3 + e_2 \wedge e_3

 \text{area of proj to } (e_1 + e_2)e_3 \text{ plane } = \text{proj to } e_1e_3 \text{ plane } + \text{proj to } e_2e_3 \text{ plane}

 \text{where } e_1 + e_2 \text{ declared to have length } 1

Facts
1. If \(v_1, \ldots, v_n \) basis for \(V \) then \(\{v_{i_1} \wedge \cdots \wedge v_{i_r} : 1 \leq i_1 \leq \cdots \leq i_r \} \)
 is a basis for \(\Lambda^r V \)
 \[\Rightarrow \dim \Lambda^r V = \binom{n}{r}\]
2. \(W \subseteq V \) subsp of dim \(r \)
 \[T \in \text{Aut}(W) \]
 \[w \in \Lambda^r W \]
 \[\Rightarrow T(w) = (\det T) w\]
Plücker embedding \(F : \text{Gr}_{r,n} \rightarrow \mathbb{P}(\Lambda^r V) = \mathbb{P} \)

\(\Span \{v_1, \ldots, v_r\} \mapsto [v_1 \wedge \cdots \wedge v_r] \)

Well def by Fact 2

e.g. \(v_1 \wedge v_2 = (v_1 + v_2) \wedge v_2 \)

\(= v_1 \wedge v_2 + v_2 \wedge v_2 \)

5v_1 \wedge v_2 \sim v_1 \wedge v_2

Todo: \(F \) inj

. \(\text{Im} F \) is proj var.

Will do at same time.

\[\text{Defn. } x \in \Lambda^r V \text{ is totally decomposable.} \]

if it's an \(r \)-wedge (not a sum)

\[\text{Note: } \text{Im} F = \{ \text{totally dec} \} \]

\(e_1 \wedge e_2 + e_3 \wedge e_4 \) is the simplest example of not-\((\text{tot. dec})\)

\[\text{Lemma. Given nonzero } x \in \Lambda^r V \]

Let \(\varphi_x : V \rightarrow V^{r+1} V \)

\(v \mapsto v \wedge x \)

1. \(\dim \ker \varphi_x \leq r \), with \(= \) iff \(x \) tot. dec.

2. If \(x = v_1 \wedge \cdots \wedge v_r \) then \(\ker \varphi_x = \Span\{v_{r+1}, v_r\} \).
Lemma. Given nonzero $x \in \mathbb{N}^r V$

Let $\varphi_x : V \to \mathbb{N}^{r+1} V$

$$v \mapsto v \wedge x$$

1. $\dim \ker \varphi_x \leq r$, with $x \totdec$ iff $x \totdec$.
2. If $x = v_1 \wedge \ldots \wedge v_r$ then $\ker \varphi_x = \Span\{v_1, \ldots, v_r\}$

1. $\Rightarrow F \text{ inj.}$
2. $\Rightarrow \text{im} F$ is a variety because:

- $x \in \text{im} F \iff x \totdec$.
- Nullity $\varphi_x \geq r$.
- $\Rightarrow \text{rank } \varphi_x \leq n-r$
- \Rightarrow all $n-r+1$ minors vanish.

$G_{r,n} \to \mathbb{N}^r V$

$\Span\{v_1, \ldots, v_r\} \to v_1 \wedge \ldots \wedge v_r$

$\mathcal{P}(\mathbb{N}^r V) \to \mathcal{P}(\text{Hom}_k(V, \mathbb{N}^{r+1} V))$

$x \mapsto \varphi_x$

Inj. & linear, can apply \mathcal{P}

rank $\leq n-r$ defines closed subset of RHS

\leadsto closed subset of RHS

\leadsto closed subset of $\mathcal{P}(\mathbb{N}^r V)$ (preim. of closed is closed).
Grassmannians

$Gr_{r,n} = \{ r \text{-planes in } V = K^n \}$

Goal: this is proj. alg var.

Plücker embedding

$F : Gr_{r,n} \rightarrow P(\Lambda^r V)$

$\text{Span \{v_1, \ldots, v_r\}} \rightarrow [v_1 \wedge \ldots \wedge v_r]$

To show: ① F inj
 ② $\text{Im } F$ closed.

Note: $\text{Im } F = \{ \text{tot. dec. elts} \}$

Tool: Wedging map

$x \in \Lambda^r V$

$\rightarrow \varphi_x : V \rightarrow \Lambda^{r+1} V$

$v \rightarrow v \wedge x$

Have $\varphi_x \in \text{Hom}_k(V, \Lambda^{r+1} V)$

Lemma. $x \in \Lambda^r V$, $x \neq 0$.

Then ① $\dim \ker \varphi_x \leq r$.

$\text{Im } F$ closed \iff ② equality $\iff x$ tot. dec.

F inj \iff ③ if $x = a \cdot v_1 \wedge \ldots \wedge v_r$ tot dec

$\ker \varphi_x = \text{Span \{v_1, \ldots, v_r\}}$
Lemma. \(x \in \Lambda^r V, x \neq 0. \)

Then
1. \(\dim \ker \varphi_x \leq r. \) \text{ Given}
2. \(\text{equality} \iff x \text{ tot. dec.} \iff \rk \varphi_x \leq n-r \)
3. \(\text{If } x = a \cdot v_1 \wedge \ldots \wedge v_r \text{ tot dec} \)
 \(\ker \varphi_x = \text{Span} \{v_1, \ldots, v_r\} \)

Proof that \(2 \implies \operatorname{Im} F \) closed:

Have \(\Lambda^r V \to \operatorname{Hom}_k(V, \Lambda^{r+1} V) \)

\(x \mapsto \varphi_x \)

injective \& linear (check).

\(\implies \rk \leq n. \)

So can apply \(\operatorname{TP} \ldots \)

\(H : \operatorname{TP}(\Lambda^r V) \xrightarrow{\text{linear}} \operatorname{TP}(\operatorname{Hom}_k(V, \Lambda^{r+1} V)) \)

\(\upharpoonright F \)

\(\operatorname{Gr}, n \)

Image of \(\operatorname{Gr}, n \) lies in set \(W \) of maps of rank \(\leq n-r \). (alg cond)

\(\operatorname{Gr}, n = Z(\Z(H^* (\text{minor conditions}))) \)

\(= H^{-1}(W \cap \operatorname{Im} H) \)
Lemma. \(x \in \Lambda^r V, \ x \neq 0. \)

Then

1. \(\dim \ker \phi_x \leq r. \)
2. equality \(\iff X \) tot. dec
3. If \(x = a \cdot v_1 \wedge \ldots \wedge v_r \) tot dec
 \(\ker \phi_x = \text{Span} \{v_1, \ldots, v_r\} \)

Pf. Choose basis \(e_1, \ldots, e_n \) for \(V \)
 \(\rightsquigarrow \) basis \(e_i \) for \(\Lambda^r V \)

Assume \(e_1, \ldots, e_s \) is basis for \(\ker \phi_x \)

Pf of 1. Want \(s \leq r \)

Say \(x = \sum a_i e_i \)

Fix some \(i \in \{1, \ldots, s\} \)

\(\phi_x(e_i) = 0 \iff a_i = 0 \) when \(i \notin I \)

i.e. every non-0 term of \(x \) has an \(e_i \).

Since true for \(i \in \{1, \ldots, s\} \)

every nonzero term uses \(e_1, \ldots, e_s \)

\(\Rightarrow s \leq r \)

Pf of 2. Suppose \(s = r \).

Then \(x \) is a mult. of \(e_1, \ldots, e_s \)

other dir: \(x = v_1 \wedge \ldots \wedge v_r \) apply 0

Pf of 3. \(\text{Span} \{v_1, \ldots, v_r\} \subseteq \ker \phi_x \)

but dim's same by 2. \(\Box \)

Fact. \(x \wedge x = 0 \iff x \) tot dec.
Local coords on Grassmannian

Consider chart on $\text{Im } F$ where $a_j \neq 0$. WLOG $a_J = a_{1 \ldots r}$ (others differ by permuting coords).

Let $B = r \times n$ matrix of rank r ($\text{row } B = \text{pt } \in \text{Gr}, n$)

$F(\text{row } B)$ is

$(b_{1e_1} \ldots b_{nen}) a \ldots a$

$(b_{1e_1} \ldots b_{nen}) = \sum a_j e_j$

Only the b_{j-e_j} with $j \notin J$ contribute to a_J

Further: a_J is the leftmost minor ($J = 1 \ldots r$)

\[J = 1, 2 \]

\[B = \begin{pmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \end{pmatrix} \]

\[b_{11}b_{22} e_{1} e_{2} + b_{12}b_{21} e_{2} e_{1} + \ldots \]

\[= (b_{11}b_{22} - b_{12}b_{21}) e_{1} e_{2} + \ldots \]

So $a_J \neq 0 \iff \text{leftmost } r \times r \text{ matrix is invertible.}$

\[\implies \text{can mult. } B \text{ on left to get} \]

\[\begin{pmatrix} I_r & b_{1m} & \ldots & b_{1n} \\ b_{r1} & \ldots & b_{rn} \end{pmatrix} \]

bij copy of $A^{r(n-r)}$
It's a bijection since RREF unique.

It's also \cong of aff. alg vars.

\Rightarrow The a_i are minors.

\Leftarrow Need to get bij as polys in a_i

One example

$$a_{23\ldots r_j} = \left| \begin{array}{ccc} 0 & 0 & \cdots & 0 & b_{1j} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & b_{rj} \end{array} \right| = (-1)^{r+1} b_{1j}$$

other cases similar.

The incidence correspondence

$$I = \{ (W, V) : W \in \text{Gr}_n, \, V \in \text{P}(W) \}$$

$\subseteq \text{Gr}_n \times \text{P}^{n-1}$

Thm. I is a proj subvar of

Applications

$\Rightarrow \bigcup_{W \in V} W \subseteq \text{P}^{n-1}$ is a subvar.

Pf idea: I

$$\begin{array}{ccc} \pi_1 & \Rightarrow & \pi_2 \\ \text{Gr}_n & \text{P}^{n-1} & \pi_2 \circ \pi_1^{-1}(V) \\ \bigcup_{W \in V} W \end{array}$$
② $X \subseteq \mathbb{P}^n$ par.

$L_r(X) = \text{locus of proj } r\text{-planes meeting } X.$

Prop. $L_r(X)$ is a proj subvar of $\text{Gr}^{r+1,n+1}$, hence \rightarrow

par in \mathbb{P}^n by prev appl.

Pr.

I

$\pi_1 \leftarrow \pi_2 \rightarrow$

$L_r(X) = \pi_1 \circ \pi_2^{-1}(X)$
Incidence Correspondence

\[I = I_{r,n} = \{(W, v) : v \in \mathbb{P}(W)\} \]
\[\subseteq Gr, n \times \mathbb{P}^{n-1} \]
\[\mathbb{P}(W) = \{ W \setminus 0 \} / \text{scale} \subseteq \mathbb{P}^{n-1} \]

Thm. \(I_{r,n} \) is proj subvar of
\[Gr, n \times \mathbb{P}^{n-1} \]

Fact 1. \(X, Y \) proj av's
\[U \subseteq X \text{ open } \Rightarrow U \times Y \text{ open in } X \times Y \]

Pf. Suffices closed \(x \) is closed.
\[\Rightarrow \text{ homog. zero set of polys in } X_i \]
Can use same polys as fn's on \(X \times Y \).
Recall from Segre: Closed sets in \(X \times Y \)
are van sets of bihomog. poly's

(Topology)

Fact 2. \(A \subseteq X \) closed
\[\iff \exists \text{ open cover } \{X_i\} \text{ of } X \text{ s.t. } X_i \cap A \text{ closed in } X_i \text{ (in subsp top)} \]

Pf \[\iff X_i \setminus A \text{ open in } X_i \text{ hence } X \]
& \[X \setminus A \text{ is union of these.} \]
Fact 3 (LinAlg)

\[A = (I_r | B)^{\text{r} \times \text{n}}. \]

Then \(v \in \text{Row} A \iff \forall i \left((i^{\text{th}} \text{col of } A) \cdot \left(\frac{v_1}{v_r} \right) = v_i \right) \)

\[\begin{align*}
\text{PF.} & \quad v \in \text{Row} A \\
\iff & \quad v \in \text{Col} \left(\begin{bmatrix} I_r \\ B^T \end{bmatrix} \right) \\
\iff & \quad \left(\begin{bmatrix} I_r \\ B^T \end{bmatrix} \right)^T x = v \quad \text{consistent} \\
\implies & \quad \left(I_r \right)^T \left(\frac{v_1}{v_r} \right) = v \quad \square
\end{align*} \]

Fact 4 \(f \in k[x_1, \ldots, x_n, y_0, \ldots, y_m] \)

homog in y's then \(Z(f) \) is closed in \(\mathbb{A}^n \times \mathbb{P}^m \) in subspace topology. \(\square \)

PF of Thm. Cover \(Gr_n \) by open sets \(U_{a_i, i_r} \). By Facts 1+2 suffices to show

\[(U_{a_i, i_r} \times \mathbb{P}^{n-1}) \cap I_r \text{ closed in } U_{a_i, i_r} \times \mathbb{P}^{n-1} \]

We'll do \(U_{a_i, i_r} \) i.e. subset of \(Gr_n \) given by \(\{ A : (I_r | B) \} \)

By Fact 3, the intersection given by

\[(i^{\text{th}} \text{col of } B) \cdot \left(\frac{v_1}{v_r} \right) = v_{i+r} \]

This poly is homog in \(v_i \) closed subset of \(U_{a_i, i_r} \times \mathbb{P}^{n-1} \) \(\square \)
More variety!

Four constructions

1. **Prop.** $V \subseteq Gr, n$ subvar
 $$\Rightarrow X = U \cup W \text{ subvar of } \mathbb{P}^{n-1}$$

 Pf. Ir, n
 $$\begin{array}{c}
 \pi_1 \\
 V \subseteq Gr, n \\
 \pi_2 \\
 \mathbb{P}^{n-1}
 \end{array}$$
 $$X = \pi_2 \circ \pi_1^{-1}(V)$$

 Need: π_i are continuous
 π_i are closed.

2. **Prop.** $X \subseteq TP^n$ pav.
 $$L_r(X) = \text{locus of proj } r\text{-planes meeting } X$$
 Prop. $L_r(X) \text{ subvar of } Gr_{r+n+1} = Gr, n$
 Pf. $L_r(X) = \pi_1 \circ \pi_2^{-1}(X)$

3. **Joins**
 $$X, Y \subseteq TP^n \text{ subvars}$$
 $$J(X, Y) = \{ \text{lines in } TP^n \text{ meeting both} \}$$
 Prop. $J(X, Y) \text{ subvar of } G_{2, n+1} = G_{1, n}$
 Pf. $J(X, Y) = L_1(X) \cap L_2(Y)$

4. **Fano varieties**
 $$Fr(X) = \{ \text{r-planars contained in } X \}$$
 $$\subseteq Gr, n.$$
Projections are Morphisms

\[X \in \mathbb{P}^n, \ Y \in \mathbb{P}^m \]

Segre \[\times Y \subseteq \mathbb{P}^n \times \mathbb{P}^m \]

\[\pi_Y : X \times Y \rightarrow Y \]

\[(x, y) \rightarrow y \]

Prop. \(\pi_Y \) is a morphism

Prf. Suffices to do

\[\mathbb{P}^n \times \mathbb{P}^m \rightarrow \mathbb{P}^m \]

Recall Segre:

\[(x, y) \rightarrow \begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix} (y_0 \ldots y_m) \]

\[= \begin{pmatrix} x_0 y_0 & \ldots & x_0 y_m \\ \vdots & \ddots & \vdots \\ x_n y_0 & \ldots & y_n y_m \end{pmatrix} \]

any nonzero row is the proj to \(Y \).

(need to check agreement on overlap, but all rows are multiples so \(\checkmark \))
Prop. π_Y is closed.

Note: false in affine case

(\text{project } x_0 y = 1 \text{ to } A',
\text{ get } A' \setminus 0)

Thm. $f : X \to Y$ morphism

\[Z \subseteq X \text{ subvar. Then } f(Z) \subseteq Y \text{ subvar. (all proj)} \]

Cor. X connected proj var

Then any (global) regular f_n is const.

If. $X \xrightarrow{\text{reg } f_n} \mathbb{A}^n \hookrightarrow \mathbb{P}^1$ not surj

image is a subvar by Thm

\Rightarrow image is finite set of pts. Done by connected. \square

Tool: Graphs

$f : X \to Y$ morphism

$\leadsto f_f : X \to X \times Y$

$x \mapsto (x, f(x))$

Image Γ_f is graph of f.

Lemma. Γ_f closed in $X \times Y$

& $f_f : X \to \Gamma_f$ is \subseteq.

To prove Thm. Lemma allows us to assume f is $\mathbb{P}^n \times \mathbb{P}^n \to \mathbb{P}^n$
Projections are closed
\[X \subseteq \mathbb{P}^n, \quad Y \subseteq \mathbb{P}^m \]
\[\leadsto X \times Y \subseteq \mathbb{P}^n \times \mathbb{P}^m \]
\[\pi_Y : X \times Y \rightarrow Y \]

Prop. \(\pi_Y \) closed.

(\text{false for affine! hyperbola!})

More generally...

Thm. Any \(f : X \rightarrow Y \) morphism
is closed

“compactness property”

Cor. Global reg \(f \) const.
if \(X \) conn.

Graphs \(f : X \rightarrow Y \)
\[\iota_f : X \rightarrow X \times Y \]
\[x \mapsto (x, f(x)) \]
\[\text{Image}(\iota_f) = \pi_f \]
\[\pi_f = \{ (x, y) \in \mathbb{P}^n \times \mathbb{P}^m : f(x_0, \ldots, x_n) = y_i \forall i \} \]
assuming \(f = (f_0, \ldots, f_m) \) on open set in \(X \)

Prop1. \(\pi_f \) closed in \(X \times Y \)
\[\iota_f : X \rightarrow \pi_f \text{ is } \subseteq. \]
Prop 1. \(\Gamma_f \) closed in \(X \times Y \)
\(f: X \to \Gamma_f \) is \(\cong \).

Morphism. At any \(x \in X \)

Find open \(U \) s.t. \(f \) given by \(f_0, \ldots, f_m \in k[x_0, \ldots, x_n] \)

same deg. On \(U \), post-comp with Segre map gives \(\prod i \neq j \)

\((x_0) (f_0 \ldots f_m) \to x_i f_j \)

- this agrees on overlaps
- same deg
- image in \(\Gamma_f \)
- \(y_i f_j \) don't sim. vanish

Closed. Let \((p, q) \notin \Gamma_f \) i.e. \(f(p) \neq q \)

Choose \(U \subseteq P^n \) nbd of \(p \) so \(f \) def on \(U \)

by \(f_0, \ldots, f_m \) of deg \(d \).

Let \(Z \subseteq P^n \times P^m \) van set of \(2 \times 2 \) minors of \((f_0 \ldots f_m) \) e.g. \(f_0 y_1 = f_1 y_0 \)

- bihomog. of deg \((d, 1) \)
- \((U \times P^m) \cap Z^c \) open nbd of \((p, q) \) in \(\Gamma_f^c \)

exactly

(\(\Gamma_f \) would be \(\Lambda Z \). Problem is that \(f \) is only def. locally.)

Isomorphism inverse is projection \(\square \)
Prop. \(\pi : \mathbb{P}^n \times \mathbb{P}^m \to \mathbb{P}^m \)

"Main thm of elimination theory"

Lemma. \(g_1, \ldots, g_r \in \mathbb{P} \left(k[x_0, \ldots, x_n] \right) \)

\(\deg d \)

Regard \(g_i \in \mathbb{P}^N \) (take coeffs)

Let \(D = d \). Then

\[\left\{ (g_1, \ldots, g_r) \in \mathbb{P}^N \right\}^C : \]

\[k[x_0, \ldots, x_n]_D \subseteq (g_1, \ldots, g_r)_D \]

\[\text{elts of} \quad \deg D \]

in the ideal

\[N = \binom{n+d}{d} \]

\[\text{is closed in} \quad \mathbb{P}^N \]

\[\text{open} \]

Gathmann

Pf of Lemma The condition

\[k[x_0, \ldots, x_n]_D \subseteq (g_1, \ldots, g_r)_D \]

equiv to

\[k[x_0, \ldots, x_n]_D = (g_1, \ldots, g_r)_D \]

Since \((g_1, \ldots, g_r) = \left\{ \sum h_i g_i : h_i \in k[x_0, \ldots, x_n] \right\} \)

\(\ast \) equiv to:

\[F_D : (k[x_0, \ldots, x_n]_{D-d})^r \to k[x_0, \ldots, x_n]_D \]

\[(h_1, \ldots, h_r) \mapsto \sum h_i g_i \]

being surjective, ie has

\[\text{rank dim } k[x_0, \ldots, x_n]_D = \binom{n+d}{D} \]

\[\iff \text{one of the minors of } F_D \]

of that dim is not zero.

\(\square \)
Prop. \(\varpi : \mathbb{P}^n \times \mathbb{P}^m \to \mathbb{P}^m \)

closed.

If. Take coords \(x_0, \ldots, x_n \), \(y_0, \ldots, y_m \).

Let \(Z \subseteq \mathbb{P}^n \times \mathbb{P}^m \).

Say \(Z = Z(f_1, \ldots, f_r) \).

\(f_i \) of deg \((d, d)\).

Let \(a \in \mathbb{P}^m \).

Let \(g_i = f_i(\cdot, a) \).

\(g_i \in k[x_0, \ldots, x_n] \).

Will show \(a \notin \varpi(Z) \) open condition.

\[
\forall \ x \in \mathbb{P}^n \text{ s.t. } (x, a) \notin Z \iff Z_\mathbb{P}(g_1, \ldots, g_r) = \emptyset \iff \sqrt{(g_1, \ldots, g_r)} \not\subseteq (x_0, \ldots, x_n) \iff \exists d_i \text{ s.t. } x_i \notin (g_1, \ldots, g_r) \forall i \iff k[x_0, \ldots, x_n]_D \subseteq (g_1, \ldots, g_r)_D \text{ some } D \text{ take } D = \Sigma d_i \text{ open condition on coeffs of } g_i \text{ (lemma)}.
\]

The coeffs of \(g_i \) are poly's in \(a \), i.e. coords on \(\mathbb{P}^m \).
Thm. Any $f: X \to Y$ morphism is closed

Proof. Say $Z \subseteq X$ closed.

$J_f: X \xrightarrow{\sim} \Gamma_f$ (Prop 1)

$\Rightarrow J_f(Z)$ closed in Γ_f,
hence in $\mathbb{P}^n \times \mathbb{P}^m$

By Prop 2 $\pi(J_f(Z)) = f(X)$
closed in \mathbb{P}^m

It is contained in Y, hence closed in Y \qed

Chap 4 Dim, deg, smoothness.

$V = \text{vect sp.}$

$\dim V = \sup \{ r : \exists \text{ strictly dec chain of lin subsp} \}

\quad V = V_0 \supset V_1 \supset \cdots \supset V_r \}$

$X = \text{top space}$

Krull dimension is

$\dim X = \sup \{ r : \exists \text{ strictly dec chain of closed irred sets} \}

\quad X = X_0 \supset \cdots \supset X_r \}$

Example. $\dim \mathbb{A}^1 = \dim \mathbb{P}^1 = 1$
Chap 4. Dim, deg, smoothness.

$V = \text{vect sp.}$

$\dim V = \sup \{ r : \exists \text{ strict dec chain of subsp.} \}$

$X = \text{top sp. Krull dim}$

$\dim X = \sup \{ r : \exists \text{ strict dec chain of closed irreducible subsp.} \}$

$X = X_0 \supseteq \cdots \supseteq X_r (\neq \emptyset)$

& $\dim \emptyset = \infty.$

$X = \text{variety}$

$\dim X = \text{Krull dim in Zar. top.}$

Example. $\dim \mathbb{A}^1 = \dim \mathbb{P}^1 = 1$

Facts

1. If $X \neq \emptyset$, Hausdorff then $\dim X = 0$

(Hausdorff \Rightarrow only irreducible are points)

2. $\dim X = \sup \{ \dim X_i : X_i \text{ irreducible} \}$

& strict if no irreducible component of (closure of) Y is irreducible component of X.

3. $Y \subseteq X \Rightarrow \dim Y \leq \dim X$

4. X covered by U_i open

$\implies \dim X = \sup \dim U_i$
Cor. of 3: X irreducible, $\dim X = 0$
\[\Rightarrow X = \text{pt.} \]

Want: $\dim A^n = n$.
\[\text{easy: } \geq n. \]

Krull dim

A = ring
$\dim A = \sup \{ r : \exists \text{ strict inc. } P_0 \subset \cdots \subset P_r \}$

proper prime ideals

By our dictionary: $\dim X = \dim k[X]$.

Prop. $\dim k[x_1, \ldots, x_n] = n$

Cor. $\dim A^n = n$

Cor. $\dim \mathbb{P}^n = n$ by 4

Example. $\dim \text{Gr}, n = r(n-r)$

(by)

\[(I \mid \quad) \quad r \times (n-r) \]

also using 4:

$\ln k[x,y]$: $0 \subset (x) \subset (x,y) \subset k[x,y]$
Prop. \text{dim } k[x_1, \ldots, x_n] = n

If. Induct on n.

$n = 0 \checkmark$

Inductive step

Say:

$O = P_0 \subset P_1 \subset \cdots \subset P_m \subset k[x_1, \ldots, x_n]$

WLOG: $P_i = (f)$ where f monic in x_n

↑ can assume P_i principal

Since $k[x_1, \ldots, x_n]$ UFD.

In a non-UFD (prime) might not be prime.

Monic in x_n: leading term x_n^d

In quotient $k[x_1, \ldots, x_n]/p$,

Show

$O = \overline{P}_1 \subset \cdots \subset \overline{P}_m$ is str. inc.

chain of prime ideals.

Now use:

$k[x_1, \ldots, x_{n-1}] \rightarrow k[x_1, \ldots, x_n]/P_i$

$x_i \mapsto \overline{x}_i$

pull back \overline{P}_i. Get chain of prime ideals in

$k[x_1, \ldots, x_{n-1}]$

Why is preim of \overline{P}_2 not 0?
Example

\[A = \frac{k[x,y]}{(y^2 - x^3 + x)} \]

\(P = \) prime in \(A \)

\(\varphi: k[x] \rightarrow A \)

\[x \mapsto \overline{x} \]

Want \(\varphi^{-1}(P) \neq 0 \).

Subexample. Why is \(\varphi^{-1}(y) \neq 0 \)?

\[x - x^3 \mapsto y^2 \in \langle y \rangle. \]

Next example

\[A = \frac{k[x,y]}{(y^2 - x^3 + xy)} \]

Want \(\varphi^{-1}(y) \neq 0 \).

\[f \in k[x][y], \quad \varphi(\text{const-in-y term}) \in \langle y \rangle \]

\[y^2 + (x)y - x^3 \]

\(\varphi(x^3) \in \langle y \rangle \)

Where using monic??
Next goal
$X \subseteq \mathbb{P}^n$ variety

$\dim X = \frac{\text{the } d \text{ s.t.}}{
\exists \text{ finite map } X \to \mathbb{P}^d
}$

Finite maps
Defn 1. $f : X \to Y$ with dense image
and s.t. $f_\ast : k[Y] \to k[X]$ finite,
meaning $k[X]$ f.g. module over $\text{im } f_\ast$

Defn 2. $f : X \to Y$ dense image
& pt preimages are finite.

Why does every variety have
a map to \mathbb{P}^d with finite
pt preimages?

Geom answer:

Stereographic proj $X \to \mathbb{P}^{n-1}$
with finite pt preims:
pt preims are $\mathbb{P}^n \cap X = \text{finite}$
Can iterate until get surj. map to \mathbb{P}^d
Noether normalization

Thm. \(A = \text{fin gen } k\text{-alg} \Rightarrow \exists y_1, \ldots, y_d \in A \text{ indep. st. } A \text{ is } fg \text{ as } k[y_1, \ldots, y_d] \text{ module.} \)

On last slide \(A = k[X] \).

(\text{Can deduce Nullstellensatz from this.})

Think of \(y \)'s as transcendental/indep and rest of \(A \) as dep. on those.

Example. \(A = k[x_1, x_2]/(x_2^2 - x_1^3 + x_1) \) (as above)

\(d=1 \), \(y_1 = x_1 \), \(x_2 \) satisfies \(f \in k[x_1][z] \)

\(f(z) = z^2 - (x_1^3 - x_1) \)

\(\sim \) \(A = \{ k[x_1] + x_2 k[x_1] \} \)

i.e. \(A \) gen by \(x_2, 1 \) as \(k[x_1] \text{ module.} \)

Notice \(F \) is monic in \(z \). Can always do lin. change of coords to make it so. The pf follows then as in example.
PF of NN in special case:

A gen by one elt \(c \).

(as \(k \)-mod)

If \(c \) transc. \(\Rightarrow A = k[c] \) done.

If \(c \) alg \(\Rightarrow f(c) = 0 \) \(f \) monic deg \(d \)

\(\Rightarrow A = k[z]/(f(z)) \)

\& \(A \) gen as a module

by \(1, c, \ldots, c^{d-1} \)
Last time:
\[\dim X = \dim k[X] = d \text{ s.t. } \exists \text{ finite } X \to \mathbb{P}^d. \]

Today:
\[\dim X = \min_{p \in X} \dim T_p X = \text{tr } \deg_k k(X) \]

Tangent spaces
\[X = \mathbb{Z}(f) \subseteq \mathbb{A}^n \text{ hypersurf.} \]
\[\nabla f_p = \left(\frac{df}{dx_1}(p), \ldots, \frac{df}{dx_n}(p) \right) \in \mathbb{k}^n. \]
\[\nabla f_p \in (\mathbb{k}^n)^* \text{ via dot product.} \]
\[T_p X = p + \ker \nabla f_p \]

Write
\[f_p^{(1)} = \sum \left(\frac{df}{dx_i}(p) \right)(x_i - p_i) \]

"Linear part of \(f \) at \(p \)"

\(T_p X \) is the set of solns.
Examples

6) Hyperplane $H \subseteq \mathbb{A}^n$
 $T_pH = H$ (exercise).

1) Parabola $f(x,y) = y - x^2$
 $\nabla f = (-2x, 1)$
 $\nabla f_0 = (0, 1)$
 $\sim T_0X = \mathbb{A}^2$

2) $X = \mathbb{Z}(y^2 - x^2 - x^3)$
 $\sim T_0X = \mathbb{A}^2$

3) $X = \mathbb{Z}(y^2 - x^3)$

4) $X = \mathbb{Z}(x^{m} - y^{m})$
 Check: $T_{(a,b)}X$ is a line if char $k \nmid m$.
 not irreducible - so we need more definitions!
Projective varieties

To define $T_p X$, pass to affine chart, take tangent space there, take projection closure.

Tangent spaces & roots

Prop. $L \subseteq \mathbb{A}^n$ affine line, $p \in L$;

$X = \mathbb{Z}(f) \subseteq \mathbb{A}^n$.

Then $L \subseteq T_p X \iff f|_L$ has a multiple root at p.

Examples.
1. $X = \mathbb{Z}(y-x^2),
 \quad x^2 = 0$.
2. $X = \mathbb{Z}(y^2 - x^3).
 \quad L : y = tx
 \quad (tx)^2 - x^3 = x^2(t^2 - x)$
 mult. root at 0.

Prop. Let $L(t) = (p_1 + b_1 t, \ldots, p_n + b_n t)$

Let $g(t) = f|_L = f(p_1 + b_1 t, \ldots, p_n + b_n t)$

Know $g(0) = f(p) = 0$.
Want $g'(0) = 0$. By chain rule:

$\frac{dg}{dt}(0) = 0 \iff \sum b_i \frac{df}{dx_i} (p) = 0
\iff L \subseteq T_p V$.

\[\blacksquare \]
Tangent sq for general irred (not just hypersurf)

\[X \subseteq \mathbb{A}^n \quad X = \mathbb{Z}(f_1, \ldots, f_m) \]

\[T_p X = \bigcap_{f \in I(X)} T_p \mathbb{Z}(f) \]

exercise \[= \bigcap_{i=1}^m T_p \mathbb{Z}(f_i) \]

Smoothness

\[X = \mathbb{Z}(f) \subseteq \mathbb{A}^n \quad \text{irred hypersurf} \]

\[p \in X \quad \text{smooth if } \nabla f_p \neq 0 \quad \iff T_p X = \mathbb{A}^{n-1} \]

\[\text{singular o.w.} \quad \iff T_p X = \mathbb{A}^n \]

\[\implies X_{\text{smooth}} \quad X_{\text{sing}} = X \setminus X_{\text{smooth}}. \]

Examples
Prop. \(X = \mathbb{Z}(f) \subset \mathbb{A}^n \) irred.
\(X_{\text{smooth}} \subseteq X \) open, dense

PF (char \(k = 0 \))

To show: 1. \(X_{\text{sing}} \) closed
2. \(X_{\text{smooth}} \neq \emptyset \).

1. \(X_{\text{sing}} = \mathbb{Z}(f, \frac{df}{dx_1}, \ldots, \frac{df}{dx_n}) \)

2. Assume \(X_{\text{sing}} = X \).
\(\Rightarrow \frac{df}{dx_i} \in (f) \quad \forall i \) since \(f \) irred.

Since \(f \) not const, this is a contrad. (look at degrees)

Note over \(\mathbb{C} \), \(X_{\text{smooth}} \) is a complex manifold (inverse fn thm).

The reducible case

If \(X \) has irred. comp's \(\{X_i\} \), say \(p \) is smooth if it lies in exactly one \(X_i \) & is smooth as a pt in \(X_i \).

\(\overline{[1]} \)

Since \(f \) not const, this is a contrad. (look at degrees)

\(X = \mathbb{Z}(xy, xz) \)

\(O \) is smooth in both components, but not smooth by our defn.
Back to dimension

Let's write
\[\dim X = \min_{p \in X} \dim T_p X \]
for \(X \) irreductible.

If \(X \) is reducible with irreductible components \(X_i \),
\[\dim X = \max \dim X_i . \]

Above examples \(1 - 4 \) have \(\dim 1 \).

Prop. \(X = \mathbb{Z}(f) \not\subseteq \mathbb{A}^n \) hypersurf.
\[\Rightarrow \dim X = n - 1 . \]

Prop. \(X \subseteq \mathbb{A}^n \) irreductible.

\[\exists \text{ open, dense } X_0 \subseteq X \text{ s.t.} \]
\[\dim T_p X = \dim X \quad \forall p \in X_0 . \]

Lemma. \(X \subseteq \mathbb{A}^n \) irreductible. \(\forall r \in \mathbb{N} \). The set
\[S_r(X) = \{ p \in X : \dim T_p X \geq r \} \] is closed.

If \(\text{Say } \Phi(X) = (f_1, \ldots, f_m) \)
\[T_p X = \bigcap \mathbb{Z}(f_i)^{(i)}_p \]
\[\Rightarrow \dim T_p X = n - \text{rank} \left(\frac{df_i}{dx_j}(p) \right) \]

Pf of Prop. Let \(r = \dim X \leadsto S_r X = X , S_{r+1} X \neq X . \]
Back to smoothness

X irred, maybe not hypersurf.

$X = \mathcal{Z}(f_1, \ldots, f_m)$

$p \in X$ is smooth if

$\text{rank} \left(\frac{\partial f_i}{\partial x_j} \right) = m.$

Fact.

$p \text{ smooth } \iff \text{dim } T_p X = \text{dim } X$

Codim.

$X = \mathcal{Z}(f_1, \ldots, f_m) \text{ irred. } \subseteq \mathbb{A}^n$

$\text{codim } X = n - \text{dim } X$

$= \text{rank} \left(\frac{\partial f_i}{\partial x_j} (p) \right) \quad p \text{ smooth}$

$\Rightarrow \text{codim } X \leq m.$

(also true for red.)
We'll show
\[\dim X = \text{trdeg}_K k(X) = \dim k[X] \]

Hypersurface case
\[k[X] = k[x_1, \ldots, x_n]/(f) \]

WLOG \(f \) uses \(x_1 \)
\[k(X) = k(x_2, \ldots, x_n)[x_1]/(f) \]

which clearly (??) has transc. deg \(n-1 \).
Goal for today:
- Coord free description of tangent spaces.

We'll show

\[T_p X \cong (M/M^2)^* = (m/m^2)^* \]

\[M \leq k[x_1, \ldots, x_n] \]

\[m \leq k[x_1, \ldots, x_n] \]

max ideals at \(p \):

\[M = (x_1 - p_1, \ldots, x_n - p_n) \]

fns that vanish at \(p \)

Cotangent spaces

\[T_p^* V = \text{dual of } T_p V \]

\[= \{ \text{linear } T_p V \to k \} \]

\[= \text{"linear forms"} \]

Notation: \(g \in k[x_1, \ldots, x_n] \)

\[dg = \text{diff. of } g \text{ at } p. \]

e.g. \(g(x,y) = x^2 + xy + x \)

\[dg = (2x + y + 1) \frac{d}{dx} + x \frac{d}{dy} \]

\[dg = \frac{d}{dx} \in (k^n)^* \]
Prop. Let $X = \mathbb{Z}(f_1, \ldots, f_m) \subseteq \mathbb{A}^n$

$p \in X \quad g \in k[X]$

$\Rightarrow dg$ is lin form on T_pX.

PF. To show well-def.

Say $G_1, G_2 \in k[x_1, \ldots, x_n]$ rep. g.

$G_1 - G_2 = \sum h_i \cdot f_i \cdot h_i \in I(X)$

$\Rightarrow d_p(G_1 - G_2) = \sum (d_p h_i)(f_i(p) \cdot \text{product rule} + h_i(p)(d_p f_i))$

O by defn

$= 0 \quad \square$

Prop. Same X. Differentiation induces surj $M \rightarrow T_p^*V$

with kernel M^2.

PF. Setup. WLOG $p = 0$.

WLOG $T_pV = \langle x_1, \ldots, x_r \rangle$ (change of coords)

Let $\tilde{M} = (x_1, \ldots, x_n) \subseteq k[x_1, \ldots, x_n]$

Its image in $k[X]$ is M.

T_pV defined so that this form evals to 0 on it.
Prop. Same X. Differentiation induces surj $M \rightarrow T_p^*X$ with kernel M^2. So: $T_p^*X = M/M^2$.

Pf. Setup. WLOG \(p = 0 \).

WLOG $T_pX = \langle x_1, \ldots, x_r \rangle$ (change of coords).

Let $\tilde{M} = (x_1, \ldots, x_n)$.

Its image in $k[X]$ is M.

Surjectivity: let $l = \sum c_i x_i \in T_p^*X$.

Then $L = \sum c_i x_i$ has $dL = l$.

Kernel: Say $g \in M$, $d_0 g = 0 \in T_p^*X$ & g is image of $G \in \tilde{M}$.

So $d_0 G = 0$ on $T_0 X$ (first Prop).

Then $d_0 G = \sum x_j (d_0 f_j)$ (by defn of T_pX).

Let $\tilde{G} = G - \sum x_j f_j$.

Then \tilde{G} still maps to g in $k[X]$.

But $d_0 \tilde{G} = 0$ on $T_0 \tilde{M}$.

\Rightarrow const & lin. terms of \tilde{G} vanish.

$\Rightarrow \tilde{G} \in \tilde{M}^2 \Rightarrow g \in M^2$. \(\Box\)
Moving the *$

\[R = \text{ring}, \ M \subseteq R \text{ max ideal} \]
\[\sim R \cdot M \leq M, \ R \cdot M^2 \leq M^2 \]
So \(M, M/M^2 \) modules over \(R \)
Also, mult by \(M \) on \(M/M^2 \) is 0 map.
So \(M/M^2 \) is \(R/M \)-module
i.e. \(M/M^2 \) is vect sp. over \(R/M \)
So \(T_p V = (M/M^2)^* \) makes sense

\((M/M^2)^*\) is called Zariski tangent sp.

Differentials

\[\text{Prop. } f : X \rightarrow Y \text{ morphism of aa's} \]
\[\sim f_* : T_p X \rightarrow T_{f(p)} Y \]
\[\text{If. } f_* : k[Y] \rightarrow k[X] \]
\[\text{preim of } M \text{ is } N = \text{max ideal for } f(p) \]
\[= \text{fns vanish at } f(p) \]
So \(N/N^2 \rightarrow M/M^2 \)
Coord free descr. of differential

Prop. $X \leq \mathbb{A}^n$ irredu.

$f \in k[X]

Then $f - f(p) \in M$.

and df = image of $f - f(p)$

in $M/M^2 = T^* p V$

Proof. Subtracting $f(p)$ kills const term.

Modding by M^2 kills quad & higher terms.

you!

Example

$X = \mathbb{Z}(x^3 - y^2) \leq \mathbb{A}^2$

At $p = (1,1)$ can see dim $M/M^2 = 1$:

$M = (x-1, y-1)

\rightarrow M^2 = (x^2 - 2x + 1, (x-1)(y-1), y^2 - 2y + 1)

\rightarrow y - 1 = (x^3 + 1)/2 - 1

= (x(2x-1)+1)/2 - 1

= (2x^2 - x + 1)/2 - 1

= (3x - 1)/2 - 1

= 3/2 (x - 1)

At $p = (0,0)$ can see dim $M/M^2 = 2$:

$M = (x,y)$, $M^2 = (x^2, xy, y^2)$

$\rightarrow M/M^2 = \{ ax + by \}$
Projective varieties
\[\mathcal{O}_X^p = \{ f/g \in K(X) : g(p) \neq 0 \} \]
\[m \in \mathcal{O}_X^p \text{ s.t. } f(p) = 0 \]
max ideal.

Lemma. \(X, M, m, p \) as above.
\[M/M^2 \cong m/m^2 \]

Pf. WLOG \(p = 0 \).
Inclusion \(M \hookrightarrow m \)
Induces injection
\[M/M^2 \hookrightarrow m/m^2 \]

Surj. Let \(f/g \in m/m^2 \) so \(g(0) \neq 0 \)
\[\sim f/g(0) - f/g \]
\[= f \left(\frac{1}{g(0)} - \frac{1}{g} \right) \in m^2 \]
So \(f/g(0) = f/g \) in \(m/m^2 \)

in \(M \subseteq k[X] \)

Cor 1. \(f : X \rightarrow Y \) rat.
\[\sim f_* : T_p X \rightarrow T_{f(p)} Y. \]

Cor 2. \(X, Y \) birat \(\Rightarrow \dim X = \dim Y \)
Back to dim

Thm. \(X \subseteq \mathbb{A}^n \) is irreducible

\[\dim X = \text{trdeg}_k k(X). \]

Also: \(\text{trdeg}_k k(X) = \dim k[X] \).

If it's true for hypersurfaces, true for all \(X \) since every \(X \) is birational equivalent to a hypersurface. (Noether normalization).

For hypersurfaces:

We proved \(\dim = n - 1 \) so suff. to show \(\text{trdeg} = n - 1 \)

\[X = \mathbb{Z}(f) \subseteq \mathbb{A}^n \] if irreducible.

\[k[X] = k[x_1, \ldots, x_n]/(f) \]

WLOG \(f \) uses \(x_1 \)

\[k(X) = k(x_2, \ldots, x_n)[x_1]/(f) \]

transcendental basis.
Blowups

or: Zooming in

Two problems
1. Varieties have singularities
 \[\mathcal{X} \]
2. Rational maps not def everywhere
 \[\mathbb{P}^n \to \mathbb{P}^{n-1} \]
def. on \[\mathbb{P}^n \backslash a \]
No way to extend over \[a \].

Blowup is a tool for fixing these.

Idea of blowup
Replace pt \(p \) with set of lines thru \(p \)

Picture over \(\mathbb{P}^1 \):

- M"obius band
- \(\text{Id, opp pts on inner circle} \)
- \(\text{polar coords} \) (almost)
- \(\text{take preim of smooth part, then take closure singularity gone!} \)
The blowup of \mathbb{A}^2 at O

\[
\pi : \mathbb{A}^n \setminus O \to \mathbb{P}^{n-1}
\]

\[(a_1, \ldots, a_n) \mapsto [a_1 : \ldots : a_n]
\]

$\Gamma_\pi \subseteq \mathbb{A}^n \times \mathbb{P}^{n-1}$ graph.

$\widetilde{\mathbb{A}}^2 = \text{Zar. closure of } \Gamma_\pi \text{ in } \mathbb{A}^n \times \mathbb{P}^{n-1}$.

$\widetilde{\mathbb{A}}^2$ blowup of \mathbb{A}^2 at O.

$n=2$ case

$\pi(x,y) = [x:y] \text{ (or } x/y)\)

$\widetilde{\mathbb{A}}^2 = \{(x,y), [t_0:t_1] : xt_1 = yt_0\}$

Check: this is the closure of Γ_π.

Projection to \mathbb{A}^2 induces

$p : \widetilde{\mathbb{A}}^2 \to \mathbb{A}^2$

and $p^{-1}(x,y) = \{[(x,y), [x:y]] : (x,y) \neq O\}$

Fact. p induces $\widetilde{\mathbb{A}}^2 \setminus E \xrightarrow{\sim} \mathbb{A}^2 \setminus O$

$E = \text{exceptional line/divisor}$
Affine cover of $\widetilde{\mathbb{A}}^2$

\mathbb{P}^1 has std. aff. cover U_0, U_1.

$\sim \mathbb{A}^2 = V_0 \cup V_1, \quad V_i \subseteq \mathbb{A}^2 \times \mathbb{A}^1$

where

$V_0 = \{(x, y, [1: t_1]) : xt_1 = y \}$

$V_1 = \{(x, y, [t_0 : 1]) : x = y t_0 \}$

Note: $V_i \cong \mathbb{A}^2$

V_0 coords: $x, u = t_1$

V_1 coords: $y, v = t_0$

So

$V_0 = \{(x, u, x), [1: u]\} = \{(x, u)\}$

$V_1 = \{(y, y, y), [v:1]\} = \{(y, v)\}$

Under $p: \widetilde{\mathbb{A}}^2 \to \mathbb{A}^2$

Hor lines \longrightarrow lines thru origin (get all but vertical)

Vert lines \longrightarrow vert lines.

Similar for V_1.

Resolving singularities

Say \(X \subset \mathbb{A}^n \) sing. set \(S \)

A resolution is

\[p: \tilde{X} \rightarrow X \text{ s.t. } \tilde{X} \text{ nonsing} \]

\& restr. \(\tilde{X} \setminus p^{-1}(S) \rightarrow X \setminus S \)

is an isomorphism.

Resolution for

- curves: blow up pts
- surfaces over \(\mathbb{C} \): Jung, Walker
- Zariski '35

3-folds char \(= 0 \): Zariski

Annals '44

3-folds char \(\neq 0 \): Abhiyankar (Z's student)

All varieties char 0: Hironaka ~'70

char \(\neq 0 \) open.

We'll look at curves \(\tilde{X} \).
Example 1

\[C = \mathbb{Z}(x^2-y^2) \]

Resolution:

Higher dim version:

\[X = \mathbb{Z}(x^2+y^2-z^2) \]
\[\tilde{X} = \mathbb{Z}(x^2+y^2-1) \]
\[\tilde{X} \rightarrow X \]
\[(x,y,z) \mapsto (x^2,y^2,z) \]

\[x_0 \text{ plane} \rightarrow \text{pt} \]

Example 2

\[C = \mathbb{Z}(y^2-x^2-x^3) \]
\[p^{-1}(C) = \{(x,y), [t_0:t_1] : y^2 = x^3 + x^2, t_0y = t_1x\} \]
\[p^{-1}(C) \cap V_0 = \{(x,xu), [1:1] : x^2(x+1-u^2)=0\} = \{(x,u) : x^2(x+1-u^2)=0\} \subseteq \mathbb{A}^2 \]
\[p^{-1}(C) = \text{parabola \setminus pt} \]
\[\text{closure } \tilde{C} \text{ is parabola.} \] Smooth!

Example 3

\[C = \mathbb{Z}(y^2-x^3) \]
\[p^{-1}(C) \cap V_0 = \{(x,u) : (xu)^3 = x^3\} \]
\[\rightarrow \text{parabola.} \]
\[\rightarrow \text{parabola.} \]

Aside: link of cusp is \((3,2)\)-cusp on \(T^2\) (trefoil)
Blowing up higher-dim subvars

Algebra version:

\[Y \subseteq X \subseteq \mathbb{A}^n \] aav's

\[Y = Z(f_0, \ldots, f_m) \quad f_i \in k[X] \]

Define:

\[\varphi : X \longrightarrow \mathbb{P}^m \]

\[x \mapsto [f_0(x) : \ldots : f_m(x)] \]

regular on \(X \setminus Y \)

\[\Gamma_\varphi \subseteq \mathbb{A}^n \times \mathbb{P}^m \quad \text{and} \quad p : \Gamma_\varphi \rightarrow X \]

closure is \(\mathcal{B}_Y(X) \) blowup of \(X \) at \(Y \).

\[p^{-1}(Y) \quad \text{"exceptional divisor"} \]

Example:

\[\mathcal{O} = Y \subseteq X = \mathbb{A}^2 \]

\[Y = Z(x, y) \]

\[\varphi : \mathbb{A}^2 \rightarrow \mathbb{P}^1 \]

\[(x, y) \mapsto [x : y] \]

Can do similar for proj var's

(Use homog. polys).

Topological version:

Read in Harris.

Idea: replacing pts in \(Y \) with space of normal directions.

\[\text{e.g. } Y = Z-\text{axis in } \mathbb{A}^3 \text{; pts in } Y \text{ get replaced with } \mathbb{P}^1 \]
Theorem X variety

$\varphi : X \longrightarrow \mathbb{P}^n$ rational

Then \exists

\[
\begin{array}{c}
\text{blowups} \quad \downarrow \quad \text{morphism} \\
\quad \downarrow \\
\quad \downarrow \\
X = X_0 \longrightarrow \mathbb{P}^n
\end{array}
\]

So: a rational map is a regular map on some blowup.
Resolution of singularities of an algebraic variety over a field of characteristic 0."

Annals of Math.
Degree

\(X = Z(f) \) hypersurf.

\(\sim \) \(\deg X \) defined as \(\deg f \).

More generally:

\(X \subseteq \mathbb{P}^n \) irreducible, \(k \)-dim

\(\sim \) \(\deg X \) is:

1. deg of any hypersurf in \(\mathbb{P}^{k+1} \) birat eq to \(X \)

2. the deg of a cover \(X \to \mathbb{P}^k \)

3. \# pts of int. of generic \((n-k-1)\)-plane with \(X \)

If \(X \) is a complex manifold

\(\sim [X] \in H_{2k}(\mathbb{P}^n; \mathbb{Z}) \cong \mathbb{Z} \)

is the degree.

(also works for singular \(X \)).
Chapter 5 Curves or Bézout & applications.

$k = \text{alg closed.}$

B's thm. $C, D \subseteq \mathbb{P}^2$ curves of deg m, n. If C, D have no irreducible components in common then they intersect mn times with mult.

Schematic

Special cases

1. $C, D \text{ lines } \sim 1 \text{ pt.}$

 \mathbb{P}^2 exists so all lines intersect. From this: all curves intersect the right # of times.

 (Like how solving $x^2 + 1 = 0$ allows to solve all polynomials)
Example. \(C = \mathbb{Z}(yz-x^2) \)
\[D = \mathbb{Z}(z-ax) \]
\[C \cap D = (yz-x^2, z-ax) \]
\[= (axy-x^2) \]
Set \(y=1 \): \(ax-x^2=0 \) ~ \(x=0,a \)
~ \([0:1:0] \) & \([a:1:a^2]\)

When \(a=0 \) get one pt of mult 2.

Special case of (2): Every conic meets line at \(\infty \) in 2 pts w/mult.

You finish the proof of Bezout in this case.
Special case of 2. Every conic meets line at ∞ in 2 pts w/mult.

e.g. circle $(x-a)^2 + (y-b)^2 = r^2 z^2$

always contains $[1:i:0] \& [1:-i:0]$

If C, D both circles, they meet at those 2 pts plus 2 more in \mathbb{A}^2

unless... concentric, in which case the 2 pts at ∞ have mult 2.

Similar: hyperbola meets line at ∞ at the asymptotes

• parabola meets it at 1 pt with mult 2. (prev. ex. a=0)

Example C = $Z(x^2 + y^2 - z^2)$

D = $Z((x-z)^2 + y^2 - z^2)$

circles

you: find the 2 pts not at ∞.
Resultants

Goal: find common zeros of two polys

Say \(f(x) = a_0 + \ldots + a_m x^m \)
\(g(x) = b_0 + \ldots + b_n x^n \)

The resultant \(\text{Res}(f,g) \) is det of the \((m+n) \times (m+n)\) Sylvester matrix.

Prop. \(\text{Res}(f,g) = 0 \iff Z(f) \cap Z(g) \neq \emptyset \)

equiv: \(f, g \) no common factors.
Linear case
\[a_0 + a_1 x = 0 \]
\[b_0 + b_1 x = 0 \]
\[\sim (a_0 \ a_1) \]
\[(b_0 \ b_1) \]

Quadratic case
\[a_0 + a_1 x + a_2 x^2 = 0 \]
\[b_0 + b_1 x + b_2 x^2 = 0 \]
\[\sim \begin{pmatrix} a_0 & a_1 & a_2 & 0 \\ 0 & a_0 & a_1 & a_2 \\ b_0 & b_1 & b_2 & 0 \\ 0 & b_0 & b_1 & b_2 \end{pmatrix} \]

Can see rank \(\geq 3 \) (look at 1st 3 rows)
\[\Rightarrow \dim \ker \leq 1 \]
So \(\det = 0 \Rightarrow \dim \ker = 1 \)

Observe: Can artificially make 2 new eqns
\[a_0 x + a_1 x^2 + a_2 x^3 \]
\[b_0 x + b_1 x^2 + b_2 x^3 \]

Now we have 4 (in eqns in the “variables"
\[x, x^2, x^3 \]
Take a vector in null space of Sylv. with
First entry 1
\[\begin{pmatrix} a_0 & a_1 & a_2 & 0 \\ 0 & a_0 & a_1 & a_2 \\ b_0 & b_1 & b_2 & 0 \\ 0 & b_0 & b_1 & b_2 \end{pmatrix} \]
\[\begin{pmatrix} 1 \\ x \\ x^2 \\ x^3 \end{pmatrix} \]
Note: \((1, x, x^2) \) solves 1st eqn
\((x, x^2, x^3) \) solves second.
Prop. \(\text{Res}(f, g) = 0 \iff f, g \text{ have common root.} \)

If. Say \(\alpha \) = root of \(f \) & \(g \).

\(\exists \) polys \(f_i, g_i \) of deg \(m - 1, n - 1 \) s.t.

\[
\begin{align*}
 f(x) &= (x - \alpha) f_i(x) \\
 g(x) &= (x - \alpha) g_i(x)
\end{align*}
\]

\(\implies f(x) g_i(x) - g(x) f_i(x) = 0. \)

Both terms have deg \(m + n - 1 \).

Equating coeffs to 0 gives \(m + n \) lin eqns in \(m + n \) vars.

(coefs of \(f_i, g_i \))

The matrix is the Sylv. matrix.

The existence of a soln shows \(\text{Res}(f, g) = 0 \).

Conversely, say \(\text{Res}(f, g) = 0 \). As above get soln \(f_i, g_i \) to

\[
 f(x) g_i(x) - g(x) f_i(x) = 0.
\]

A root \(\alpha \) of \(f \) must be a root of \(g \) or \(f_i \). If \(g \), done.

If \(f_i \), cancel \((x - \alpha)\) from \(f \) & \(f_i \) continue inductively.

[\(\square \)]
In proj space

\[C = \mathbb{Z}(f) \]
\[D = \mathbb{Z}(g) \]

Assume WLOG \([0:0:1]\)
on neither:

(\exists \text{ purely } \mathbb{Z} \text{ term})

\[f(x,y,z) = z^m + a_{m-1} z^{m-1} + \ldots + a_0 \]
\[g(x,y,z) = z^n + \ldots + b_0 \]
\[a_i, b_i : \text{homog polys in } x,y \]
\[\text{of deg } m-i, n-i \]

\[\rightsquigarrow \text{ } R(x,y) \text{ resultant wrt } z \]
\[\text{poly in } x,y. \]

Prop. \[R(x,y) \] either \(= 0 \)
or \(\deg mn. \)

Example. \[f(x,y,z) = x^2 + y^2 - z^2 \]
\[g(x,y,z) = x^3 - x^2 z - x z^2 \]

\[\rightsquigarrow \text{ } R(x,y) = -x^2 y^4 \rightarrow x = 0 \]
\[2 \text{ roots w/ mult} \]
\[4 \text{ roots w/ mult.} \]
\[x = 0 : y^2 - z^2 = 0 \rightarrow [0:1:1],[0:1:-1] \]
both have mult 2 \(\rightarrow \)
\[y = 0 : x^2 - z^2 = 0 \rightarrow [1:0:1],[1:0:-1] \]

or \(y = 0 \)
Resultants

\[f(x) = a_0 + a_1 x + \cdots + a_m x^m \]
\[g(x) = b_0 + \cdots + b_n x^n \]

\[\to \text{ Sylvester matrix} \]

\[
\begin{pmatrix}
 a_0 & \cdots & a_m \\
 \vdots & \ddots & \vdots \\
 b_0 & \cdots & b_n
\end{pmatrix}
\]

n times

m times

det. is \(\text{Res}(f,g) \).

Prop. \(\text{Res}(f,g) = 0 \iff \text{common factor}. \)

Lemma. \(f, g \) have common factor \(\iff \)

\[\exists s, t: \deg s < \deg g \]
\[\deg t < \deg f \]

\[fs + gt = 0. \]

Pf. \(\Rightarrow \) \(f, g \) have common factor

\[\Rightarrow f = h f_1 \quad g = h g_1 \]
\[\Rightarrow f g_1 - g f_1 = 0. \]

\(\Leftarrow \) \(fs + gt = 0. \) Assume no comm. fac.

\[\Rightarrow \text{roots of } f \text{ are roots of } gt \]
\[\Rightarrow \text{roots of } f \text{ are roots of } t \]
but \(\deg t < \deg f. \) \(\Box \)
Prop. \(\text{Res}(f, g) = 0 \iff \text{common factor} \)

Lemma. \(f, g \) have common factor \(\iff \)

\[\exists \ s, t : \quad \deg s < \deg g \]
\[\deg t < \deg f \]
\[f s + g t = 0. \]

Pf of Prop. Want to know existence of \(s, t \) as in Lemma.

Let \(P(x) = f(x) s(x) + g(x) t(x) \)

\[s = \sum_{i=0}^{\text{deg } f} a_i x^i \quad t = \sum_{i=0}^{\text{deg } g} b_i x^i \]

\[P(x) = \left(a_m s_{n-1} + b_{m-1} t_{m-1} \right) x^{m+n-1} + \ldots \]

Solving for \((s_0, \ldots, s_{n-1}, t_0, \ldots, t_{m-1}) \) or:

\[
\begin{pmatrix}
\vdots \\
\vdots \\
\end{pmatrix}
\begin{pmatrix}
a_0 & \cdots & a_m \\
\vdots & \ddots & \vdots \\
\vdots & \cdots & \vdots \\
\end{pmatrix}
\begin{pmatrix}
\vdots \\
\vdots \\
\end{pmatrix} = 0
\]

\[b_0 \ldots b_n \]

\[\square \]
Curves in \mathbb{P}^2 version

$C = Z(f)$, $D = Z(g)$

WLOG $[0:0:1] \notin C \cup D$,

$\Rightarrow f, g$ have \mathbb{Z}-only term,

which must be lead term.

$\Rightarrow f = a_0Z^m + a_1Z^{m-1} + \ldots$

$g = b_0Z^n + b_1Z^{n-1} + \ldots$

a_i, b_i homog. deg i

in x, y.

$\Rightarrow R(x,y) = \text{Res}(f,g)$ poly in x, y.

Prop. $R(x,y)$ is either: $\equiv 0$ or homog. of deg mn.

If. To show $R(tx, ty) = t^{mn}R(x,y)$

$R(tx, ty) = \begin{pmatrix}
 a_0 & ta_1 & t^2 a_2 & \ldots \\
 ta_0 & t^2 a_1 & t^3 a_2 & \ldots \\
 b_0 & tb_1 & t^2 b_2 & \ldots
\end{pmatrix}$

Mult. rows by $t^0, t^1, \ldots, t^{n-1}, t^0, \ldots, t^{m-1}$

factor: $n(n-1)/2 + m(m-1)/2$

Divide cols by $t^0, \ldots, t^{m+n-1} \sim \text{Res}(f,g)$

factor: $(m+n)(m+n-1)/2$

Difference is mn. □
Bézout's Thm: \(C, D \subseteq \mathbb{P}^2 \) curves of deg \(m, n \) w/ no common irreducible components. Then they intersect \(mn \) times with multiplicity.

Proof Setup

1. Suffices to consider \(C, D \) irreducible.
2. \(\dim \text{CnD} = 0 \) \(\implies |\text{CnD}| < \infty \).
3. Without loss of generality (WLOG), change coordinates so \(x \neq 0 \) at all pts of \(\text{CnD} \).

4. Say \(C = \mathbb{Z}(f), \ D = \mathbb{Z}(g) \)

 \(\implies \mathbb{R}(x, y) \)

 Step 1. \(\mathbb{R}(x, y) \) homogeneous of deg \(mn \)

 If \(\mathbb{R}(x, y) = 0 \) then \(V[a:b] \in \mathbb{P}^1 \)

 \(f, g \) have common 0, violating \(2\).

 Apply Prop.

 Write \(\mathbb{R}(x, y) = x^m \mathbb{R}_*(y/x) \) where

 \(\mathbb{R}_* \) is poly in \(t = y/x \) of deg \(\leq mn \).

 Step 2. deg \(\mathbb{R}_* = mn \).

 deg \(\mathbb{R}_* < mn \iff \) no \(y^{mn} \) term. \iff all terms of \(R \) have \(x \iff \mathbb{R}(0,1) = 0 \) violates \(3\).
Step 3: Roots of \(R_x \)

\[\iff \text{CND \ w/mult.} \]

\[\text{If } \alpha \text{ is a root of } R_x \]

\[\text{then } \alpha = a/b \text{ with } R(a,b) = 0. \]

\[\Rightarrow f(a,b,z), g(a,b,z) \text{ have} \]

\[\text{common root } \iff \text{pt of CND of form } [a:b:c]. \]

\[\Rightarrow [a:b:c] \in \text{CND } a \neq 0 \]

\[\Rightarrow \text{bla a root of } R_x \]

Define multiplicity now:

\[\# \text{common roots } c \iff \text{mult.} \]

\[\text{corresp. to given } \alpha. \]

\[\text{or } \deg \text{ of } c \text{ as root of } \]

\[\text{more prec. } f-g \text{ @ (a,b)}. \]

Claim: This equals \(\deg \text{ of } a \) as root of \(R_x \).

\[\text{Mult. defined as mult of root of } R_x. \]

Need Setup 5: No two pts \([a:b:c], [a:b:c'] \in \text{CND}. \)

\[\iff \text{no pts of CND lie on line } || \text{ to } z\text{-axis}. \]
Let \(p \in \text{CND} \).

Assume \(p \) in std aff. chart \(z = 1 \).

Define

\[
\iota(\text{CND}, p) = \dim_k \left(\frac{\mathcal{O}_p}{(f,g)_p} \right)
\]

\(\mathcal{O}_p \): rat'l fns def. at \(p \).

\((f,g)_p \): ideal gen by \(f,g \) in \(\mathcal{O}_p \).

“localization”: allow denominators that don’t vanish at \(p \).

i.e. denoms don’t lie max ideal at \(p \) which is \((x_1-p_1), \ldots, (x_n-p_n) \).

Example 1. \(k = \mathbb{C} \)

\[
f(x,y) = y - x^3 \\
g(x,y) = y
\]

\[
\mathcal{O}_p = \mathbb{C}[x,y]_{(x,y)} \cong \left(\frac{\mathbb{C}[x,y]}{(y-x^3, y)} \right)_{(x,y)} \\
\cong \left(\mathbb{C}[x]/(x^3) \right)_{(x)} \cong \mathbb{C}^3 \text{ as } \mathbb{C} \text{- v.s.}
\]

Example 2. basis \(1, x, x^2 \)

\[
x^3 = y \\
y = 0.
\]
Why are the multiplicities the same?

Write $I_p(C,D)$.

or $I_p(f,g)$

Fulton

Gims (?)

Axioms

1. $I_p(f,g) = I_p(g,f)$

2. $I_p(f,g) = \begin{cases} 0 & p \notin C \cap D \\ \infty & p \in \text{a common comp.} \end{cases}$

3. C, D lines, $p \in C \cap D \Rightarrow I_p(f,g) = 1$

4. $I_p(f_1, f_2, g) = I_p(f_1, g) + I_p(f_2, g)$

5. $I_p(f,g) = I_p(f, g + fh)$ if $\deg h = \deg g - \deg f$.

Thm. An $I_p(f,g)$ satisfying the axioms exists and is unique.
Final HW

7 problems on web site or project on Teams 1-2 "pages"

Learn something & tell us about it.

Ideas: Robotics Splines Poncelet’s porism

Gröbner bases Image deblurring Hironaka’s thm Sheaves / Schemes

Divisors Riemann-Roch Thm or creative writing artwork.

Fano varieties
Computing multiplicities

\[C = \mathbb{Z}(x^2+y^2-z^2) \]
\[D = \mathbb{Z}(x^2+y^2-2z^2) \]
\[C \cap D = [\pm i : 1 : 0] \]

Via axioms

\[I_p(x^2+y^2-z^2, x^2+y^2-2z^2) \]
\[= I_p(x^2+y^2-z^2, z^2) \quad \text{“row op”} \]
\[= I_p(x^2+y^2, z^2) \]
\[= 2I_p(x^2+y^2, z) \]
\[= 2I_p(x+iy, z) + 2I_p(x-iy, z) \]
\[= 2 + 0 \quad \text{or} \quad 0 + 2 \quad \text{“lines”} \]
\[\text{dep. on } p \]

Via resultant

\[R(x, y) = \det \begin{pmatrix} -1 & 0 & x^2+y^2 & 0 \\ 0 & -1 & 0 & x^2+y^2 \\ 0 & 0 & 0 & x^2+y^2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \]
\[= (x^2+y^2)^2 \]
\[\sim R_*(t) = (1+t^2)^2 \]
\[= (1+it)^2(1-it)^2 \]
via local rings

\[f = \mathbb{Z}(y-x^2) \quad g = \mathbb{Z}(y) \]

\[\mathbb{C}[x,y]/(f,g)(x,y) \]

\[\cong (\mathbb{C}[x,y]/(f,g))(x,y) \]

\[\{ \frac{ax+b}{cx+d} : d \neq 0 \} \]

WTS: \[\dim = 2 \]

basis 1, x.

rationalize:

\[\frac{ax+b}{cx+d} \quad \frac{-cx+d}{-cx+d} \]

\[= -\frac{acx^2 + (ad-bc)x + bd}{d^2 - c^2 x^2} \]

\[= \left(\frac{ad-bc}{d^2} \right)x + \frac{b}{d} \]

exercise. Do example on last slide this way.

easier. Fitchett example \[x^3 = y, y = 0. \]
Easy conseq's of Bézout

1. If \(|C \cap D| = mn\), all intersections are transverse (mult 1)
2. If \(|C \cap D| > mn\), common irred. comp.
3. Any two proj. curves intersect.
4. \(|C \cap L| = m\) with mult. (L line).

More conseq's

5. \(C\) irred has at most \(\binom{d-1}{2}\) sing pts.
 Gathmann Prop 13.5
 Fulger Cor 8.14
 \(d = \deg C\)

6. Degree genus Formula.
 \(C\) smooth \(\Rightarrow g = \binom{d-1}{2}\)
 Kerr Sec 14.3.

\[\text{really}\]
7. Pascal's mystic hexagon.
 If a hexagon is inscribed in an irreducible conic then opposite sides meet in collinear points.

8. Cayley-Bacharach Thm
 Any cubic passing thru 8 pts, passes thru the 9th.

9. Space of smooth curves of degree d in \mathbb{P}^2 is a complex projective space of dimension $d(d+3)/2$.

10. Harnack's thm
 A smooth real projective curve in \mathbb{P}^2 has at most $(d-1)+1$ loops.
11. A nonsing cubic has 9 pts of inflection

12. \(\text{Aut } \mathbb{P}^n \cong \text{GL}_{n+1} k \). Gathmann

13. Classific. of irreducible singular cubics:
 \[
 y^2 - x^3 - x^2 \\
 y^2 - x^3 \\
 y^2 - x^3
 \]

 and smooth cubics:
 \[
 y^2 = 4x^3 - ax - b
 \]

Hulek Prop 4.11

14. Smooth cubics are groups!

Dolgachev p.52
Mystic Hexagon

Prop. Say C, D deg n

$|C \cap D| = n^2$

Assume mn of the int pts lie on irred curve E of deg m

Then the remaining $n(n-m)$ pts lie on a curve F

of $\leq n-m$.

PF of Mystic Hex

Say vertices are p_0, \ldots, p_5

Let $L_i = \text{line through } p_i p_{i+1} \pmod{5}$

Let $L = L_0 L_2 L_4$ $L' = L_1 L_3 L_5$ cubics.

L & L' have no common factor.

Bézout $\Rightarrow |L \cap L'| \leq 9$.

If < 9, nothing to do.

6 pts of $L \cap L'$ are p_0, \ldots, p_5

which lie on conic.

The other 3 lie on a line by the Prep.

Other pf Shafarevich
Prop. Say C, D deg n
$|C \cap D| = n^2$
Assume mn of the int pts
lie on irred curve E of deg m
Then the remaining $n(n-m)$ pts
lie on a curve F
of deg $\leq n-m$.

Pf. Say C, D, E given by f, g, h.
Let $[a:b:c] \in E \setminus (C \cap D)$
Let $F_0 = Z(p)$
$p = g(a,b,c)f - f(a,b,c)g$
deg $\leq n$.

Then $|E \cap F_0| \geq mn+1$ ble it
contains mn pts of $E \cap (C \cap D)$
and $[a:b:c]$.
Bézout $\Rightarrow F_0, E$ have common comp.
E irred, so it is a comp. of F_0
$\Rightarrow p = h q^E$ deg $q \leq n-m$
Let $F = Z(q)$
Each $[u:v:w]$ in $(C \cap D) \setminus E$ satisfies
$f=0, g=0$ thus satisfies $p=0$
Also $h(u,v,w) \neq 0 \Rightarrow q(u,v,w) = 0$,
i.e. $[u:v:w] \notin F$. □
Curves thru given pts

Existence

1. Thru 2 pts F line.
 \[ax+by = c \]
 2 constraints (given pts)
 3 unknowns \(a, b, c \).

2. Thru 5 pts F quadric
 (same lin. alg)

 Bézout \(\Rightarrow \) if 3 are collinear
 then quadric is reducible
 (not a conic) \(\Rightarrow \) union of
 2 lines.

Uniqueness

Need some kind of general posn.

1. always unique (if 2 pts distinct)
2. if all 5 pts collinear, then can take that line & any other line.

But if no 3 collinear get uniqueness: can't be 2 distinct lines by hyp.

\(3 \) Thru 9 pts F cubic (same lin alg).
If 8 of 9 pts lie on conic C then many CUL are cubics containing the 9 pts.

Even without this, uniqueness harder to come by.

Say $C_0 = \mathbb{Z}(f_0)$ cubics.

$C_{oo} = \mathbb{Z}(f_{oo})$

& $|C_0 \cap C_{oo}| = 9$.

Then $C_t = \mathbb{Z}(f_0 + tf_{oo})$ for $u \in \mathbb{K}$ contains all 9 pts.

But these are only ones going through the 9 pts, or even 8 of them.

Cayley-Bacharach thru k alg closed.

If D is a cubic curve passing thru 8 pts of $C_0 \cap C_{oo}$ then $D = C_t$ for some t. In particular, D passes thru the 9^{th} pt.
Claim 1. No 4 of the a_i collinear.

Proof (Pf). Bézout \Rightarrow C_0, C_∞ would both contain this line.

$\Rightarrow |C_0 \cap C_\infty| = \infty > 9$.

Claim 2. No 7 of the a_i lie on quadric.

Proof (Pf). Same.

Claim 3. Any 5 of the a_i determine a unique quadric.

Proof (Pf). If 5 pts lie on two quadrics E, F.

Bézout $\Rightarrow E \cap F$ contains line L.

Claim 1 $\Rightarrow L$ contains at most 3 of the a_i.

The other ≥ 2 pts must lie on other comp of E (line)
& other comp of F (line).

Both are lines. Must be same line. So $E = F$.

Claim: Assume D passing thru 8 pts $a_1, ..., a_8$ of $C_0 \cap C_\infty$.

Say $C_0 = Z(p_0), C_\infty = Z(p_\infty)$

$D = Z(p)$ Want: $D : C_t$

Assume $D \neq C_t$ any t.

Claim 1. No 4 of the a_i collinear.

Proof (Pf). Bézout $\Rightarrow C_0, C_\infty$ would both contain this line.

$\Rightarrow |C_0 \cap C_\infty| = \infty > 9$.

Claim 2. No 7 of the a_i lie on quadric.

Proof (Pf). Same.
Claim 4. No 3 of the ai collin.

Proof. Say ai, a2, a3 \in L line.

Claim 1 \implies a_i \not\in L i > 3.

a2, ..., a8 lie on unique quadric E.

(Claim 3)

Let b be another pt on L

Let c be another pt not on E or L.

By lin alg E cubic

q = xp + yp + zp0

vanishing at b, c. (3 vars
2 eqns)

By \bigotimes q \neq 0.

Let F = \mathbb{Z}(q).

FnL contains a1, a2, a3, b

Bezout \implies F = L \cup quadric

The quadric contains

a4, ..., a8 (p, p0, p00 all

vanish at

a1, ..., a8)

By uniqueness of E:

F = L \cup E

but c not in E, L hence

not in F. contradiction

\square
Claim 5. No 6 of a_1, \ldots, a_8 lie on a quadric.

Pf. Say a_1, \ldots, a_6 lie on $Q = \text{quadric}$.

Claim 4 \Rightarrow $Q \neq L_1 \cup L_2$

\Rightarrow Q conic.

Let L = line thru a_7, a_8.

b = another pt on Q

c = pt not on L or Q

As before, have nonzero cubic $q = xp + yp_0 + zp_{00}$ vanishes at b, c. Also at a_1, \ldots, a_8

Let $F = \mathbb{Z}(q)$ Note $b, c \in F$. F contains $a_1, \ldots, a_6, b \in Q$

$\Rightarrow F = Q \cup$ line

The line is L, but L hence F does not contain c.

Contrad.
Finishing...

Let \(L = \text{line thru } a_1, a_2 \)
\[Q = \text{quadric thru } a_3, \ldots, a_7 \]

Claim 3 \(\Rightarrow \) \(Q \) unique

Claim 4 \(\Rightarrow \) \(Q \) cubic (can't be 2 lines)

Claim 4 \(\Rightarrow \) \(a_8 \notin L \)

Claim 5 \(\Rightarrow \) \(a_8 \notin Q \)

Let \(b, c \in L \setminus Q \)

Again, \(J \) non-0 cubic

\[q = xp + yp_0 + zp_0 \]

Vanishing on \(b, c \Rightarrow F = Z(q) \)

\(F \cap L \) contains \(a_1, a_2, b, c \)

Bézout \(\Rightarrow F = L \cup Q \quad \text{quadric} \)

The quadric contains \(a_3, \ldots, a_7 \)

So it is \(Q \)

So \(F = L \cup Q \)

\(a_8 \) not in \(F \).

But \(F \) is a lin interp. of 3 cubics cont. \(a_1, \ldots, a_8 \).

\(\Box \)
Proof of Pappus

C, D are cubics given by triples of lines in hexagon.

E given by $L_1, L_2,$ line thru c_1, c_2

Cayley-Bacharach \(\Rightarrow \) E contains c_3

(We assumed $c_1 \neq c_2$, o/w nothing to prove.)

Pascal’s Mystic Hexagon similar

(note: the c_i can’t all lie on the conic by Bezout.)
Smooth cubics are groups

$C = \mathbb{Z}(y^2 - x^3 - ax - b) \subseteq \mathbb{P}^2$

smooth

$O = [0:1:0] \in C$

pt at ∞

For $c = [u:v:w]$

let $\overline{c} = [u:-v:w]$

refl. thru x-axis.
in \mathbb{A}^2 plane

so $\overline{O} = O$.

Define $a + b = \overline{c}$

\begin{align*}
\text{Thm. } C & \text{ is an abel. gp.} \\
\text{pf. } \text{identity: } & 0. \\
\text{inverse: } & c + \overline{c} = 0. \\
\text{abelian: } & \checkmark
\end{align*}
associativity, assume WLOG
0, a, b, c, a+b, b+c, -(a+b),
-(b+c) all distinct from
each other and
-(a+b)+c) & -(a+(b+c))

(uses smoothness)

Let \(D = \overline{ab}, \overline{c(a+b)}, \overline{o(b+c)} \)

\(E = \overline{o a+b} \overline{bc} = \overline{a(b+c)} \)

C & D cubics meeting at 9 pts;
no common comp.
E passes thru 8 hence 9th by Cay-Ba

The 9th pt is
-(a+b)+c)
The line thru a, b+c meets C
in \(-(a+(b+c)) \& -(a+b)+c)
hence equal. \(\square \)
Tao says: Pascal is a degenerate case of the associativity law on cubic.

Pappus is a degenerate case of Pascal.

Mordell’s Thm: \(\mathbb{Q} \) pts on \(C \) form a fin. gen. abel. gp.
Goal: Classify cubic curves.

i.e. $C = \mathcal{Z}(f) \subseteq \mathbb{P}^2$

$\deg 3 \quad (\text{char } k = 0)$

proj. equiv: $\text{GL}_3 k$

4 cases: 1. 3 lines
2. conic + line
3. sing irred
4. smooth irred cubic

Case 1 3 lines.

lines in $\mathbb{P}^2 \leftrightarrow$ pts in \mathbb{P}^2

via orthog. compl. in k^3

Prop. $C =$ union of 3 lines

Then C is proj eq to exactly one of

1. $\mathcal{Z}(xyz)$
2. $\mathcal{Z}(x^4(x+y))$
3. $\mathcal{Z}(x^2y + y^2z + z^2x)$
4. $\mathcal{Z}(x^3 + y^3 + z^3)$

$\text{PF. Translate to problem about pts in } \mathbb{P}^2$

$1 \iff$ collinear, distinct...
Case 2: Conic + line

Prop. $C = \text{conic} + \text{line} = Q \cup L$

The C is proj eq to exactly one of

1. $\mathbb{P}^1(\mathbb{C})$
2. $\mathbb{P}^2(\mathbb{C})$

Proof. We already showed (using quad. forms) Q is proj equiv to $\mathbb{P}^1(\mathbb{C})$ and L is hence determined.

Bézout \rightarrow 2 cases

1. $\lvert Q \cap L \rvert = 2$
2. $\lvert Q \cap L \rvert = 1$

Q is image of $\mathbb{P}' \rightarrow \mathbb{P}^2$

Up to change of coords in \mathbb{P}^1 can assume int. pts are

1. $[1:0:0]$ & $[0:0:1]$
2. $[0:0:1]$

Show \exists linear change of coords on \mathbb{P}^2 realizing this reparameterization.
If the param of Q is $[t : u] \mapsto [t^2 : tu : u^2]$.

If the parametrization in \mathbb{P}^1 is $(a \ b)$, then in \mathbb{P}^2 the reparam. is
\[
\begin{pmatrix}
 a^2 & 2ab & b^2 \\
 ac & ad+bc & bd \\
 c^2 & 2cd & d^2
\end{pmatrix}
\]

Case 3: Sing. irred. cubics.

Prop. $C = \text{sing. irred. cubic}$.

Then C is proj equiv to exactly one of

1. $\mathbb{Z}(y^2z-x^3-x^2z)$
2. $\mathbb{Z}(y^2z-x^3)$
Fact. \(X = \mathbb{Z}(f) \subseteq \mathbb{P}^2 \)
\[p \in X \quad L = \text{line} \]
Then \(I_p(X,L) = \text{mult}_p(f|L) \)

Proof. Change coords so \(p = [0:0:1] \)
& \(L = \mathbb{Z}(y) \)
Let \(\overline{f}(x) = f(x,0,1) \)
\[I_p(X,L) = \dim \mathcal{O}_{\mathbb{P}^2, [0:0:1]} / (f,y)_{[0:0:1]} \]
\[= \dim \mathcal{O}_L, (0,0) / (f,y)_{(0,0)} \]
\[= \dim (k[x,y] / (f,y))_{(0,0)} \]
\[= \dim (k[x,y] / (f))_1 \] is smallest degree of a term of \(\overline{f} \)

Example.
\[f(x,y,1) = x^3y + x^2y^2 + x^2 + x^3 \]
\[\overline{f}(x) = x^2 \]

Cor 1. \(X = \mathbb{Z}(f) \subseteq \mathbb{P}^2 \), \(p \in X \)
TFAE
1. \(\text{mult}_p(f|L) > 1 \)
2. \(L \subset T_p X \)
3. \(I_p(X,L) > 1 \)

Proof. We already \(1 \Leftrightarrow 2 \)
Fact gives \(1 \Leftrightarrow 3 \)
Cor 2. $C \subseteq \mathbb{P}^2$ cubic curve. Then C has at most 1 sing pt.

PF. Suppose p, q singular, $p \neq q$.

Let $L = \overline{pq}$ (line)

$T_p C \cong T_q C \cong \mathbb{A}^2$

Cor 1 $\Rightarrow I_p (C, L) \geq 2$

$I_q (C, L) \geq 2$

Contradicts Bezout.
Proof of Case 3 Prop

Assume the sing. is at \([0:0:1]\)

\[f = bx^3 + cx^2y + dx^2y + ey^3 + q(x,y) \]

\[q(x,y) = \text{quad form in } x, y. \]

(Since \((0,0) \in C\), no const. term.
Since \((0,0)\) sing., no linear terms.)

Have \(q(x,y) \neq 0\) because then

\(f \) factors into product of 3 linear.
(divide by \(y^3 \rightarrow \)

\(\text{poly of deg 3 in } x/y \).)

Can factor \(q(x,y) = l_0(x,y)L_1(x,y) \)

Case 1. \(l_0, l_1 \) not multiples

Case 2. \(l_0 = cL_1 \) (multiples).

Clever change of vars.

e.g. in Case 2, wlog \(l_0 = l_1 = y \)

\[f = bx^3 + cx^2y + dx^2y + ey^3 + y^2 \]

(linear)
Change of vars: \(x = x' - \frac{c}{3b} y \)

gets rid of \(x^2y \) term

etc... \(\square \)
Case 4 Smooth irreducible cubics.

Prop. \(C \) smooth irr cubic

Then \(C \) is equiv to some \(C_{b,c} = \mathbb{Z}(f_{b,c}) \) Weierstrass curves.

\[
f_{b,c} = y^2 - 4x^3 + bx + c
\]

\[H \] flex pts & Hessians

\(p \in C \) is a flex pt (or inflection pt)

if \(I_p(C, T_p C) \geq 3 \)

If \(C = \mathbb{Z}(f) \subseteq \mathbb{P}^2 \)

\[
H_f = \det \left(\frac{\partial^2 f}{\partial x_i \partial x_j} \right)_{0 \leq i,j \leq 2}
\]

Have: \(H_f \) is \(\equiv 0 \) or homog of deg \(3(d-2) \)

\[H \] Hessian curve \(H \subseteq \mathbb{P}^2 \)

Prop. \(H \cap C = \{ \text{flex pts of } C \} \)

Cor. \(C \) has a flex pt.
Discriminants

Define \(\text{Disc}(f_b,c) \) to be \(b^3 - 27c^2 \)

Fact. If \(\alpha_i \) are roots of \(f \),
\[\text{Disc}(f_b,c) = \alpha_n^{2n-2} \prod_{i \neq j} (\alpha_i - \alpha_j) \]

Define \(\text{Disc}(C_b,c) = \text{Disc}(f_b,c)/16 \)

Prop. \(C_b,c \) smooth \(\iff \) \(\text{Disc}(C_b,c) \neq 0 \).

Proof of Prop. Let \(p = \text{flex pt of } C \)

WLOG \(p = [0:0:1] \)

\& \(T_pC = \mathbb{Z}(x) = L \)

\[\implies f|_L \text{ has } 0 \text{ of order } 3 \text{ at } 0. \]

\[\implies f = -y^3 + x(ax^2 + by^2 + cz^2 + dxz + eyz + gyz) \]

No quadratic terms (flex pt)

Plugging in \(x = 0 \) needs to give deg 3 in \(y \).

Clever change \(p \) smooth \(\implies c \neq 0 \) of coords \(\Box \)
Smooth cubic curves

Last time: every smooth irreducible cubic in \(\mathbb{P}^2 \) is proj. equiv to \(C_{b,c} = Z(f_{b,c}) \)

\[
f_{b,c} = y^2 - 4x^3 + bx + c.
\]

Also: \(C_{b,c} \) smooth \(\iff \) \(\text{Disc}(f_{a,b}) \neq 0 \)

\[
b^3 - 27c^2
\]

Conseq. \(\{ \text{Smooth } C_{b,c} \} \) is \(\cong \) a.a.v.

J - invt

\[
J: \{ C_{b,c} \} \rightarrow C
\]

\[
C_{b,c} \mapsto \frac{b^3}{b^3 - 27c^2}
\]

Equiv. reln on \(\{ C_{b,c} \} \): differ by proj aut fixing \([0:0:1] \).

Prop. \(C_{b,c} \sim C_{b',c'} \iff \) same \(\chi \) (smooth)

Lemma. Any proj aut. fixing \([0:0:1] \) is of form

\[
\begin{align*}
\chi & \mapsto u^2 x \\
y & \mapsto u^3 y
\end{align*}
\]

Pf. (in alg...
Prop. \(C_{b,c} \sim C_{b',c'} \iff \text{same} \)
(smooth)

Pf. Special case \(J = 0 \)
\[\Rightarrow \text{easy using lemma.} \]
\[\Leftarrow J = 0 \Rightarrow b = b' = 0, c \neq 0. \]
Choose \(u \) s.t. \(c' = c/u \).

By Prop:
\[J: \{ \text{smooth } C_{b,c} \} \sim_C \]

Another point of view \(k = \mathbb{C} \).
Every \(C_{b,c} \) is homeo to \(\mathbb{C}^2 = T^2 \)
\[y^2 = 4x^3 - bx - c = 4(x - \lambda_1)(x - \lambda_2)(x - \lambda_3) \]
\(C_{b,c} \) has an involution \((y, x) \mapsto (-y, x) \)

\[\mathbb{P}^2 \]
\[\text{Cb,c} \]

Project

Iviste

\[\text{quotient by } L \]

Upshot: \(C_{b,c} \cong T^2 \) as Riemann surf. (complex manifold)
Another way to make a torus

\(\omega_1, \omega_2 \in \mathbb{C} \sim \)

\[\Lambda = \{ z \omega_1 + z \omega_2 \} \]

\[E_\Lambda = \mathbb{C}/\Lambda \cong \mathbb{T}^2 \] "elliptic curve"

 Equivalence on \(\{ E_\Lambda \} \).

Given \(\Lambda \), can rotate, flip, scale so

\[\omega_1 = 1 \]

\[\text{Im} \omega_2 > 0 \quad (\omega_1 = 1, \omega_2 = \tau) \]

\[E_\Lambda \cong E_\tau \quad \tau \in \text{upper half plane} \]

Moreover: \(\text{SL}_2 \mathbb{Z} \triangleleft \text{upper half-plane} \) by Möbius transform.

Fact: \(E_\tau \sim E_{\tau'} \iff \tau \sim \tau' \mod \text{SL}_2 \mathbb{Z} \).

equiv: biholomorphism.

Will show: \(\{ E_\Lambda \}_\sim \leftrightarrow \{ \text{smooth} \} / \sim \mathbb{C} \).
Fact: \(E_\tau \sim E_{\tau'} \iff \tau \sim \tau' \mod \text{SL}_2 \mathbb{Z} \).

Example: \(\tau = i \).

\[
\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \cdot i = \frac{1 \cdot i + 1}{0 \cdot i + 1} = 1 + 1 = \tau'
\]

Note: Mod. surf homeo to \(\mathbb{C} \)
Hexagonal torus

$e^{i\pi/3}$

Cut & paste into a reg. hexagon
Now have: \(\{ \text{smooth} \} \) \& \(\{ E^A \}/\sim \)
both homeo to \(C. \)

Want: Map between them.

\textbf{Weierstrass} \(\wp \) \textbf{function}

Assume \(\Lambda = \mathbb{Z} + \mathbb{Z} \tau \)

\(\wp(z) = \wp_\Lambda(z) = \)

\[\frac{1}{z^2} + \sum_{\omega \in \Lambda \setminus 0} \left(\frac{1}{(z - \omega)^2} - \frac{1}{\omega^2} \right) \]

Invariant under \(\Lambda \), i.e.

it is a fn on \(E_\Lambda \)

Get a map:

\(\wp : E_\Lambda \to C_{b,c} \)

\[z \mapsto \left[1 : \wp(z) : \wp'(z) \right] \]

where

\[b = 60 \sum_{\omega \in \Lambda \setminus 0} \frac{1}{\omega^4} \]

\[c = 140 \sum_{\omega \in \Lambda \setminus 0} \frac{1}{\omega^6} \]

Works because

\[(\wp')^2 = 4 \wp^3 - b \wp - c. \]

This the desired map \(\{ E^A \}/\sim \to \{ \text{smooth} \} \)

\(\text{mod. surf.} \)

\(\text{Injectivity: J-inv.} \)

\(\text{Surj.: J is holom. nonconst. map} \)
Cayley-Salomon Thm: Every smooth cubic surface in \mathbb{P}^3 contains exactly 27 lines.

and the (non)-intersection pattern given by

Clebsch

\[\text{(diagram showing lines and points)} \]
Basic strategy

1. Show that $Z(x^3 + y^3 + z^3 + w^3)$, "Fermat curve", has exactly 27 lines.

2. The number of lines is locally constant in moduli space of smooth cubic surfaces (which is connected).

In alg. top. language.

- Space of pairs $(x, L) \in X$
- Space of smooth cubics
- Deg 27 cov. space.
27 LINES

A cubic surf. is

$S = Z(f) \subseteq \mathbb{P}^3$

where $\deg f = 3$.

Cayley-Salmon Thm

S smooth \Rightarrow

S contains exactly

27 lines

Strategy. Show that some S has 27 lines and

1) # lines is locally const.
 in space of smooth cubic surfaces.

2) The same S is Fermat cubic:

$Z(x_0^3 + x_1^3 + x_2^3 + x_3^3)$
Lemma. The Fermat cubic X has 27 lines (exactly)

$$X = \mathbb{Z} (x_0^3 + x_1^3 + x_2^3 + x_3^3)$$

If X invt under permutation of coords.

Up to such permvt, any line is

$$x_0 = a_2 x_2 + a_3 x_3$$
$$x_1 = b_2 x_2 + b_3 x_3$$

(move the 2 pivots to left)

Such a line lies in X \iff

$$0 = (a_2 x_2 + a_3 x_3)^3 + (b_2 x_2 + b_3 x_3)^3 + x_2^3 + x_3^3$$

Compare coeffs of $\text{LHS}=0$ & RHS

$$\Rightarrow a_2^3 + b_2^3 = -1 \quad (1)$$
$$\Rightarrow a_3^3 + b_3^3 = -1 \quad (2)$$
$$\Rightarrow a_2 a_3 = - b_2 b_3 \quad (3)$$
$$\Rightarrow a_2 a_3^2 = - b_2 b_3^2 \quad (4)$$

If $a_2, b_2, a_3, b_3, a_2, b_2, a_3, b_3$ all $\neq 0$ then $(3)^3/(4)$

$$\Rightarrow a_2^3 = - b_2^3 \quad \text{contradicting (1)}.$$

So WLOG $a_2 = 0$

$$\Rightarrow b_2^3 = -1 \quad (1)$$
$$\Rightarrow b_3^3 = 0 \quad (3)$$
$$\Rightarrow a_3^3 = -1 \quad (2)$$

$\Rightarrow 9$ lines (3 choices for each $3\sqrt{-1}$) \blacksquare
How are the lines related?

Intersection pattern: (complement of) Schlafli graph

Claim: Each of the 27 lines in a cubic surface intersects 10 of the others.

Idea: Given one line \(L \), consider the family of planes \(\{P_x\} \subseteq \mathbb{P}^3 \) containing \(L \).

\(P_x \cap S = \text{cubic curve } X_x \)

By our classification:

\(X_x = 3 \text{ lines } L, L', L'' \)

or \(L \cup \text{C}_x \text{ conic} \)

(need to rule out double lines).

\(\text{C}_x \text{ being } 2 \text{ lines or conic is a smoothness/Jacobian condition} \)

\(\rightarrow \deg 5 \text{ poly in } \lambda. \)

For each of the 5 roots, get 2 lines intersecting \(L \).
Moduli space of smooth cubic surfaces

All cubic surfaces:
\[\mathbb{P}^1 = \mathbb{P}^{(3+3)} - 1 \]

3 balls in 4 boxes

Claim:
Smoothness for \(\mathbb{Z}(f) \)

\[\iff \text{rk} \left(\frac{df}{dx_i} \right) \neq 0. \]

\[\iff \text{rk} \geq 1 \]

\[\iff \text{tangent space} \leq 2. \]

Lucky accident: The zeros of \(\frac{df}{dx_i} \) are all on \(\mathbb{Z}(f) \)

Why? Euler's identity

\[3f = \sum x_i \frac{df}{dx_i} \]

By claim: Moduli space of smooth cubic surfaces is complement of intersection of 4 hypersurfs in \(\mathbb{P}^{19} \).

\[\rightarrow \text{dense} \& \text{open in } \mathbb{P}^{19} \]

\[\Rightarrow \text{moduli sp. is connected (codim reasons)} \]
The Incidence Correspondence

Main idea: M is locally const.

Two ways of rephrasing this:
1. $M \xrightarrow{p} U$ is a cov. sp.
 $(p^{-1}(x))$ is locally const.

WTS this # is indesp. of X.

Have: $\# \text{lines in } X = |\mathfrak{m}^{-1}(x)|$
\[x \in X \implies \mathfrak{m}^{-1}(x) \neq \emptyset \]
\[
\begin{align*}
\Rightarrow & \quad \text{proj.}\ M \quad \xrightarrow{p} U \\
 & \quad (x, L) \quad \mapsto \quad x \\
\end{align*}
\]

There is projection $\pi : M \rightarrow U$.

$M = \mathfrak{m}(x, L) \subseteq U \times G(2, 3)$
\[n \times U = M \subseteq G(2, 3) \]

Books like a graph.

M looks like a graph.

M is the graph of a continuously diff.

$U = \text{mod. sp. of sm. cub. surf}$

$G(2, 3)$
Blowing up \mathbb{P}^2

Thm. Every smooth cubic S surface is the blowup of \mathbb{P}^2 at 6 pts.

Cor. $S \cong \mathbb{CP}^2 \#_6 \mathbb{CP}^2$

$\implies \pi_1(S) = 1$

$\implies H_2(S) \cong \mathbb{Z}^7$

(intersection form type $(1,-6)$ etc.)

Idea of Thm

Further analysis of above work L_1L_2\implies S has 2 disjoint lines.

(we found the ones that intersect)

Define map $\phi: L_1 \times L_2 \rightarrow S$

Works except when xy is one of the 27 lines.

\[\phi(x,y) \]

the 3rd pt on \overline{xy} in S.

\[L_1 \]

\[L_2 \]
Need to blow up \(L_1 \times L_2 \) in 5 pts to get well def map.

And: \(L_1 \times L_2 \cong \mathbb{P}' \times \mathbb{P}' \rightarrow \mathbb{P}^2 \)

\(\mathbb{P}' \times \mathbb{P}' \)

\(\cong \mathbb{P}^2 \) blown up at 1 pt.

(stereographic proj.)